Metadata of the chapter that will be visualized online

Chapter Title	Integer and Combinatorial Optimization	
Copyright Year	2012	
Copyright Holder	Springer Science+Business Media, LLC	
Corresponding Author	Family Name	Hoffman
	Particle	
	Given Name	Karla L.
	Suffix	
	Division/Department	Systems Engineering and Operations Research Department, School of Information Technology and Engineering
	Organization/University	George Mason University
	City	Fairfax
	State	VA
	Postcode	22030
	Country	USA
	Email	khoffman@gmu.edu
	URL	http://iris.gmu.edu/~khoffman
Author	Family Name	Ralphs
	Particle	
	Given Name	Ted K.
	Suffix	
	Division/Department	Department of Industrial and Systems Engineering
	Organization/University	Lehigh University
	City	Bethlehem
	State	PA
	Postcode	18015
	Country	USA
	Email	ted@lehigh.edu
	URL	http://coral.ie.lehigh.edu/~ted

1

Integer and Combinatorial Optimization

Karla L. Hoffman ${ }^{1}$ and Ted K. Ralphs ${ }^{2}$
${ }^{1}$ Systems Engineering and Operations Research
Department, School of Information Technology and Engineering, George Mason University, Fairfax, VA, USA
${ }^{2}$ Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA

Introduction

Integer optimization problems are concerned with the efficient allocation of limited resources to meet a desired objective when some of the resources in question can only be divided into discrete parts. In such cases, the divisibility constraints on these resources, which may be people, machines, or other discrete inputs, may restrict the possible alternatives to a finite set. Nevertheless, there are usually too many alternatives to make complete enumeration a viable option for instances of realistic size. For example, an airline may need to determine crew schedules that minimize the total operating cost, an automotive manufacturer may want to determine the optimal mix of models to produce in order to maximize profit, or a flexible manufacturing facility may want to schedule production for a plant without knowing precisely what parts will be needed in future periods. In today's changing and competitive industrial environment, the difference between ad hoc planning methods and those that use sophisticated mathematical models to determine an optimal course of action can determine whether or not a company survives.

A common approach to modeling optimization 33 problems with discrete decisions is to formulate them 34 as mixed integer optimization problems. This entry 35 focuses on problems in which the functions required 36 to represent the objective and constraints are additive, 37 i.e., linear functions. Such a problem is called a mixed 38 integer linear optimization problem (MILP) and its 39 general form is

$$
\begin{gather*}
\max \sum_{j \in B} c_{j} x_{j}+\sum_{j \in I} c_{j} x_{j}+\sum_{j \in C} c_{j} x_{j} \\
\text { subject to } \sum_{j \in B} a_{i j} x_{j}+\sum_{j \in I} a_{i j} x_{j} \\
+\sum_{j \in C} a_{i j} x_{j}\left\{\begin{array}{l}
\leq \\
= \\
\geq
\end{array}\right\} b_{i} \forall i \in M, \tag{2}\\
l_{j} \leq x_{j} \leq u_{j} \quad \forall j \in N=B \cup I \cup C \tag{3}\\
x_{j} \in\{0,1\} \forall j \in B \tag{4}\\
x_{j} \in \mathbb{Z} \quad \forall j \in I, \text { and } \tag{5}\\
x_{j} \in \mathbb{R} \forall j \in C . \tag{6}
\end{gather*}
$$

A solution to (1)-(6) is a set of values assigned 41 to the variables $x_{j}, j \in N$. The objective is to find a 42 solution that maximizes the weighted sum (1), where 43 the coefficients $c_{j}, j \in N$ are given. B is the set of 44 indices of binary variables (those that can take on 45 only values 0 or 1), I is the set of indices of integer 46 variables (those that can take on any integer value), and 47 C is the set of indices of continuous variables. 48

As indicated above, each of the first set of constraints (2) can be either an inequality constraint (" \leq " or " \geq ") or an equality constraint (" $=$ "). The data l_{j} and u_{j} are the lower- and upper-bound values, respectively, for variable $x_{j}, j \in N$.

This general class of problems has many important special cases. When $B=I=\varnothing$, we have what is known as a linear optimization problem (LP). If $C=I=\varnothing$, then the problem is referred to as a (pure) binary integer linear optimization problem (BILP). Finally, if $C=\varnothing$, the problem is called a (pure) integer linear optimization problem (ILP). Otherwise, the problem is simply a MILP. Throughout this discussion, we refer to the set of points satisfying (1)-(6) as \mathcal{S}, and the set of points satisfying all but the integrality restrictions (4)-(5) as \mathcal{P}. The problem of optimizing over \mathcal{P} with the same objective function as the original MILP is called the LP relaxation and arises frequently in algorithms for solving MILPs.

A class of problems closely related to BILPs are the combinatorial optimization problems (COPs). A COP is defined by a ground set \mathcal{E}, a set \mathcal{F} of subsets of ε that are called the feasible subsets, and a $\operatorname{cost} c_{e}$ associated with each element $e \in \mathcal{E}$. Each feasible subset $F \in \mathcal{F}$ has an associated (additive) cost taken to be $\Sigma_{e \in F} c_{e}$. The goal of a COP is find the subset $F \in \mathcal{F}$ of minimum cost. The set \mathcal{F} can often be described as the set of solutions to a BILP by associating a binary variable x_{e} with each member e of the ground set, indicating whether or not to include it in the selected subset. For this reason, combinatorial optimization and integer optimization are closely related and COPs are sometimes informally treated as being a subclass of MILPs, though there are COPs that cannot be formulated as MILPs.

Solution of an MILP involves finding one or more best (optimal) solutions from the set \mathcal{S}. Such problems occur in almost all fields of management (e.g., finance, marketing, production, scheduling, inventory control, facility location and layout, supply chain management), as well as in many engineering disciplines (e.g., optimal design of transportation networks, integrated circuit design, design and analysis of data networks, production and distribution of electrical power, collection and management of solid waste, determination of minimum energy states for alloy construction, planning for energy resource problems, scheduling
of lines in flexible manufacturing facilities, and 97 design of experiments in crystallography). 98
This article gives a brief overview of the related 99 fields of integer and combinatorial optimization. These 100 fields have by now accumulated a rich history and 101 a rich mathematical theory. Texts covering the theory 102 of linear and integer linear optimization include those 103 of Bertsimas and Weismantel (2005), Chvátal (1983), 104 Nemhauser and Wolsey (1988), Parker and Rardin 105 (1988), Schrijver (1986), and Wolsey (1998). 106 Overviews of combinatorial optimization are 107 provided by Papadimitriou and Steiglitz (1982) and 108 Schrijver (2003). Jünger et al. (2010) have produced 109 a marvelous and comprehensive volume containing an 110 overview of both the history and current state of the art 111 in integer and combinatorial optimization.

Applications

This section describes some classical integer and 114 combinatorial optimization models to provide an 115 overview of the diversity and versatility of this field.

Knapsack Problems

Suppose one wants to fill a knapsack that has a weight 118 capacity limit of W with some combination of items 119 from a list of n candidates, each with weight w_{i} and 120 value v_{i}, in such a way that the value of the items 121 packed into the knapsack is maximized. This problem 122 has a single linear constraint (that the weight of the 123 items selected not exceed W), a linear objective 124 function (to maximize the sum of the values of the 125 items in the knapsack), and the added restriction that 126 each item either be in the knapsack or not-it is not 127 possible to select a fractional portion of an item. For 128 solution approaches specific to the knapsack problem, 129 see Martello and Toth (1990). 130

Although this problem might seem too simplistic to 131 have many practical applications, the knapsack 132 problem arises in a surprisingly wide variety of fields. 133 For example, one implementation of the public-key 134 cryptography systems that are pervasive in security 135 applications depends on the solution of knapsack 136 problems to determine the cryptographic keys 137 (Odlyzko 1990). The system depends on the fact that, 138 despite their simplicity, some knapsack problems are 139 extremely difficult to solve.

More importantly, however, the knapsack problem arises as a substructure in many other important combinatorial problems. For example, machine-scheduling problems involve restrictions on the capacities of the machines to be scheduled (in addition to other constraints). Such a problem involves assigning a set of jobs to a machine in such a way that the capacity constraint is not violated. It is easy to see that such a constraint is of the same form as that of a knapsack problem. Often, a component of the solution method for problems with knapsack constraints involves solving the knapsack problem itself, in isolation from the original problem (see Savelsbergh (1997)). Another important example in which knapsack problems arise is the capital budgeting problem. This problem involves finding a subset of the set of (possibly) thousands of capital projects under consideration that will yield the greatest return on investment, while satisfying specified financial, regulatory, and project relationship requirements (Markowitz and Manne 1957; Weingartner 1963). Here also, the budget constraint takes the same form as that of the knapsack problem.

Network and Graph Problems

Many optimization problems can be represented by a network, formally defined as a set of nodes and a set of arcs (unidirectional connections specified as ordered pairs of nodes) or edges (bidirectional connections specified as unordered pairs of nodes) connecting those nodes, along with auxiliary data such as costs and capacities on the arcs (the nodes and arcs together without the auxiliary data form a graph). Solving such network problems involves determining an optimal strategy for routing certain commodities through the network. This class of problems is thus known as network flow problems. Many practical problems arising from physical networks, such as city streets, highways, rail systems, communication networks, and integrated circuits, can be modeled as network flow problems. In addition, there are many problems that can be modeled as network flow problems even when there is no underlying physical network. For example, in the assignment problem, one wishes to assign people to jobs in a way that minimizes the cost of the assignment. This can be modeled as a network flow problem by
creating a network in which one set of nodes represents 188 the people to be assigned, and another set of nodes 189 represents the possible jobs, with an arc connecting 190 a person to a job if that person is capable of 191 performing that job. A general survey of applications 192 and solution procedures for network flow problems is 193 given by Ahuja et al. (1993).

Space-time networks are often used in scheduling 195 applications. Here, one wishes to meet specific 196 demands at different points in time. To model this 197 problem, different nodes represent the same entity at 198 different points in time. An example of the many 199 scheduling problems that can be represented as 200 a space-time network is the airline fleet assignment 201 problem, which requires that one assign specific 202 planes to prescheduled flights at minimum cost 203 (Abara 1989; Hane et al. 1995). Each flight must 204 have one and only one plane assigned to it, and 205 a plane can be assigned to a flight only if it is large 206 enough to service that flight and only if it is on the 207 ground at the appropriate airport, serviced and ready to 208 depart when the flight is scheduled for takeoff. The 209 nodes represent specific airports at various points in 210 time and the arcs represent the flow of aircraft of 211 a variety of types into and out of each airport. There 212 are layover arcs that permit a plane to stay on the 213 ground from one time period to the next, service arcs 214 that force a plane to be out of duty for a specified 215 amount of time, and connecting arcs that allow 216 a plane to fly from one airport to another without 217 passengers.

A variety of important combinatorial problems 219 are graph based, but do not involve flows. Such 220 graph-based combinatorial problems include the 221 node-coloring problem, the objective of which is to 222 determine the minimum number of colors needed to 223 color each node of a graph in order that no pair of 224 adjacent nodes (nodes connected by an edge) share 225 the same color; the matching problem, the objective 226 of which is to find a maximum weight collection of 227 edges such that each node is incident to at most one 228 edge; the maximum clique problem, the objective of 229 which is to find the largest subgraph of the original 230 graph such that every node is connected to every other 231 node in the subgraph; and the minimum cut problem, 232 the objective of which is to find a minimum weight 233 collection of edges that (if removed) would disconnect 234 a set of nodes s from a set of nodes t.

Although these graph-based combinatorial optimization problems might appear, at first glance, to be interesting only from a mathematical perspective and to have little application to the decision-making that occurs in management or engineering, their domain of application is extraordinarily broad. The four-color problem, e.g., which is the question of whether a map can be colored with four colors or less, is a special case of the node-coloring problem. The maximum clique problem has important implications in the growing field of social network analysis. The minimum cut problem is used in analyzing the properties of real-world networks, such as those arising in communications and logistics applications.

Location, Routing, and Scheduling Problems

Many network-based combinatorial problems involve finding a route through a given graph satisfying specific requirements. In the Chinese postman problem, one wishes to find a shortest walk (a connected sequence of arcs) through a network such that the walk starts and ends at the same node and traverses every arc at least once (Edmonds and Johnson 1973). This models the problem faced by a postal delivery worker attempting to minimize the number traversals of each road segment on a given postal route. If one instead requires that each node be visited exactly once, the problem becomes the notoriously difficult traveling salesman problem (Applegate et al. 2006). The traveling salesman problem has numerous applications within the routing and scheduling realm, as well as in other areas, such as genome sequencing (Avner 2001), the routing of SONET rings (Shah 1998), and the manufacturing of large-scale circuits (Barahona et al. 1988; Ravikumar 1996). The well-known vehicle routing problem is a generalization in which multiple vehicles must each follow optimal routes subject to capacity constraints in order to jointly service a set of customers (Golden et al. 2010).

A typical scheduling problem involves determining the optimal sequence in which to execute a set of jobs subject to certain constraints, such as a limited set of machines on which the jobs must be executed or a set of precedence constraints restricting the job order (see Applegate and Cook (1991)). The literature on scheduling problems is extremely rich and many variants of the basic problem have been suggested
(Pinedo 2008). Location problems involve choosing 284 the optimal set of locations from a set of candidates, 285 perhaps represented as the nodes of a graph, subject to 286 certain requirements, such as the satisfaction of given 287 customer demands or the provision of emergency 288 services to dispersed populations (Drezner and 289 Hamacher 2004). Location, routing, and scheduling 290 problems all arise in the design of logistics systems, 291 i.e., systems linking production facilities to end-user 292 demand points through the use of warehouses, 293 transportation facilities, and retail outlets. Thus, it is 294 easy to envision combinations of these classes of 295 problems into even more complex combinatorial 296 problems and much work has been in this direction. 297

Packing, Partitioning, and Covering Problems 298

 Many practical optimization problems involve 299 choosing a set of activities that must either cover 300 certain requirements or must be packed together so as 301 to not exceed certain limits on the number of activities 302 selected. The airline crew scheduling problem, e.g., is 303 a covering problem in which one must choose a set of 304 pairings (a set of flight legs that can be flown 305 consecutively by a single crew) that cover all 306 required routes (Hoffman and Padberg 1993; Vance 307 et al. 1997). Alternatively, an example of a set packing 308 problem is a combinatorial auction (Cramton et al. 309 2006). The problem is to select subsets of a given set 310 of items that are up for auction in such a way that each 311 item is included in at most one subset. This is the 312 problem faced by an auctioneer in an auction in 313 which bidders can bid on sets of items rather than just 314 single items. If one requires that all items be sold, then 315 the auctioneer's problem becomes a partitioning 316 problem. There are a variety of languages that allow 317 users to express the interrelationship among their bids. 318 Such languages (e.g., "OR," "XOR," "ORofXOR," 319 "XORofOR") create a somewhat different structure 320 to the combinatorial problem.In the above examples, the coefficients in 322 constraints (2) are either zero or one and all variables 323 are binary. The variables represent the choice of 324 activities, while each constraint represents either 325 a covering (" \geq "), packing (" \leq "), or partitioning 326 ("=") requirement. In many cases, these problems 327 can be easily interpreted by thinking of the rows as 328 a set of items to be allocated or a set of activities to 329 be undertaken and the columns as subset of those 330 items/activities. The optimization problem is then to 331
find the best collection of subsets of the activities/items (columns) in order to cover/partition/pack the row set. Surveys on set partitioning, covering, and packing are given in Balas and Padberg (1976), Borndörfer and Weismantel (2000), Hoffman and Padberg (1993), and Padberg (1979b).

Other Nonconvex Problems

The versatility of the integer optimization model (1)-(6) might best be exemplified by the fact that many nonlinear/nonconvex optimization problems can be reformulated as MILPs. For example, one reformulation technique for representing nonlinear functions is to find a piecewise linear approximation and to represent the function by adding a binary variable corresponding to each piece of the approximation. The simplest example of such a transformation is the fixed-charge problem in which the cost function has both a fixed charge for initiating a given activity, as well as marginal costs associated with continued operation. One example of a fixed-charge problem is the facility location problem in which one wishes to locate facilities in such a way that the combined cost of building the facility (a onetime fixed cost) and producing and shipping to customers (marginal costs based on the amount shipped and produced) is minimized (see Drezner and Hamacher (2004)). The fact that nothing can be produced in the facility unless the facility exists creates a discontinuity in the cost function. This function can be transformed to a linear function by the introduction of additional variables that take on only the values 0 or 1 . Similar transformations allow one to model separable nonlinear functions as integer (linear) optimization problems.

Solution Methods

Solving integer optimization problems (finding an optimal solution), can be a difficult task. The difficulty arises from the fact that unlike (continuous) linear optimization problems, for which the feasible region is convex, the feasible regions of integer optimization problems consists of either a discrete set of points or, in the case of general MILP, a set of disjoint polyhedra. In solving a linear optimization problem, one can exploit the fact that, due to the convexity of the feasible region, any locally optimal
solution is a global optimum. In finding global optima 377 for integer optimization problems, on the other hand, 378 one is required to prove that a particular solution 379 dominates all others by arguments other than the 380 calculus-based approaches of convex optimization. 381 The situation is further complicated by the fact that 382 the description of the feasible region is implicit. In ${ }^{383}$ other words, the formulation (1)-(6) does not provide 384 a computationally useful geometric description of the 385 set \mathcal{S}. A more useful description can be obtained in one 386 of two ways described next.

The first approach is to apply the powerful 388 machinery of polyhedral theory. Weyl (1935) 389 established the fact that a polyhedron can either be 390 defined as the intersection of finitely many 391 half-spaces, i.e., as a set of points satisfying 392 inequalities of the form (2) and (3), or as the convex 393 hull of a finite set of extreme points plus the conical 394 hull of a finite set of extreme rays. If the data 395 describing the original problem formulation are 396 rational numbers, then Weyl's theorem implies the 397 existence of a finite system of linear inequalities 398 describing the convex hull of \mathcal{S}, denoted by $\operatorname{conv}(\mathcal{S}) 399$ (Nemhauser and Wolsey 1988). Optimization of 400 a linear function over $\operatorname{conv}(\mathcal{S})$ is precisely equivalent 401 to optimization over \mathcal{S}, but optimizing over $\operatorname{conv}(\mathcal{S})$ is 402 a convex optimization problem. Thus, if it were 403 possible to enumerate the set of inequalities in 404 Weyl's description, one could solve the integer 405 optimization problem using methods for convex 406 optimization, in principle. The difficulty with this 407 method, however, is that the number of linear 408 inequalities required is too large to construct 409 explicitly, so this does not lead directly to a practical 410 method of solution.

A second approach is to describe the feasible set 412 in terms of logical disjunction. For example, if $j \in B, 413$ then either $x_{j}=0$ or $x_{j}=1$. This means that, in 414 principle, the set \mathcal{S} can be described by replacing 415 constraints (4)-(5) with a set of appropriately chosen 416 disjunctions. In fact, it is known that any MILP can be 417 described as a set of linear inequalities of the form (2) 418 and (3), plus a finite set of logical disjunctions (Balas 419 1998). Similarly, however, the number of such 420 disjunctions would be too large to enumerate 421 explicitly and so this does not lead directly to a 422 practical method of solution either.

Although neither of the above methods for 424 obtaining a more useful description of \mathcal{S} leads 425
directly to an efficient methodology because they both produce descriptions of impractical size, most solution techniques are nonetheless based on generating partial descriptions of \mathcal{S} in one of the above forms (or a combination of both). The general outline of such a method is as follows:

1. Identify a (tractable) convex relaxation of the problem and solve it to either

- Obtain a valid upper bound on the optimal solution value; or
- Prove that the relaxation is infeasible or unbounded (and thus, the original MILP is also infeasible or unbounded)

2. If solving the relaxation produces a solution $\hat{x} \in \mathbb{R}^{N}$ that is feasible to the MILP, then this solution must also be optimal to the MILP.
3. Otherwise, either

- Identify a logical disjunction satisfied by all members of \mathcal{S}, but not by \hat{x} and add it to the description of \mathcal{P} (more on how this is done below); or
- Identify an implied linear constraint (called a valid inequality or a cutting plane) satisfied by all members of \mathcal{S}, but not by \hat{x} and add it to the description of \mathcal{P}
In Step 1, the LP relaxation obtained by dropping the integrality conditions on the variables and optimizing over \mathcal{P} is commonly used. Other possible relaxations include Lagrangian relaxations (Fisher 1981; Geoffrion 1974), semi-definite programming relaxations (Rendl 2010), and combinatorial relaxations, e.g., the one-tree relaxation for the traveling salesman problem Held and Karp (1970). This discussion initially considers use of the LP relaxation, since this is the simplest one and the one used in state-of-the-art software. Additional relaxations are considered in more detail in section "Advanced Procedures."

By recursively applying the basic strategy outlined above, a wide variety of convergent methods that generate partial descriptions of \mathcal{S} can be obtained. These methods can be broadly classified as either implicit enumeration methods (employing the use of logical disjunction in Step 3) or cutting plane methods (based on the generation of valid inequalities in Step 3), though these are frequently combined into hybrid solution procedures in computational practice. In the next two sections, more details about these two classes of methods are given.

Enumerative Algorithms

The simplest approach to solving a pure integer 476 optimization problem is to enumerate all finitely 477 many possibilities (as long as the problem is 478 bounded). However, due to the combinatorial 479 explosion resulting from the fact that the size of the 480 set \mathcal{S} is generally exponential in the number of 481 variables, only the smallest instances can be solved 482 by such an approach. A more efficient approach is to 483 only implicitly enumerate the possibilities by 484 eliminating large classes of solutions using 485 domination or feasibility arguments. Besides 486 straightforward or implicit enumeration, the most 487 commonly used enumerative approach is called 488 branch and bound.

The branch-and-bound method was first proposed 490 by Land and Doig (1960) and consists of generating 491 disjunctions satisfied by points in \mathcal{S} and using 492 them to partition the feasible region into smaller 493 subsets. Some variant of the technique is used by 494 practically all state-of-the-art solvers. An LP-based 495 branch-and-bound method consists of solving the LP 496 relaxation as in Step 1 above to either obtain a solution 497 and an associated upper bound or to prove infeasibility 498 or unboundedness. If the generated solution $\hat{x} \in \mathbb{R}^{N}$ to 499 the relaxation is infeasible to the original MILP, then 500 $\hat{x}_{j} \notin \mathbb{Z}$ for some $j \in B \cup I$. However, $x_{j} \in \mathbb{Z}$ for all $x \in \mathcal{S} .501$ Therefore, the logical disjunction

502

$$
\begin{equation*}
x_{j} \leq\left\lfloor\hat{x}_{j}\right\rfloor \text { OR } x_{j} \geq\left\lceil\hat{x}_{j}\right\rceil \tag{7}
\end{equation*}
$$

is satisfied by all $x \in \mathcal{S}$, but not by \hat{x}. In this case, one 503 can impose the disjunction implicitly by branching, 504 i.e., creating two subproblems, one associated with 505 each of the terms of the disjunction (7). 506

The branch-and-bound method consists of applying 507 this same method to each of the resulting subproblems 508 recursively. Note that the optimal solution to 509 a subproblem may or may not be the global optimal 510 solution. Each time a new solution is found, it is 511 checked to determine whether it is the best seen so 512 far and if so, it is recorded and becomes the current 513 incumbent. The true power of this method comes from 514 the fact that if the upper bound obtained by solving the 515 LP relaxation is smaller than the value of the current 516 incumbent, the node can be discarded. Mitten (1970) 517 provided the first description of a general algorithmic 518 framework for branch and bound. Hoffman and 519

Padberg (1985) provided an overview of LP-based branch-and-bound techniques. Linderoth and Savelsbergh (1999) reported on a computational study of search strategies used within branch and bound.

Cutting Plane Algorithms

Gomory $(1958,1960)$ was the first to derive a cutting plane algorithm following the basic outline above for integer optimization problems. His algorithm can be viewed, in some sense, as a constructive proof of Weyl's theorem. Although Gomory's algorithm converges to an optimal solution in a finite number of steps (in the case of pure integer optimization problems), the convergence to an optimum may be extraordinarily slow due to the fact that these algebraically derived valid inequalities are weak-they may not even support $\operatorname{conv}(\mathcal{S})$ and are hence dominated by stronger (but undiscovered) valid inequalities. Since the smallest possible description of $\operatorname{conv}(\mathcal{S})$ is desired, one would like to generate only the strongest valid inequalities, i.e., those that are part of some minimal description of $\operatorname{conv}(\mathcal{S})$. Such inequalities are called facets. In general, knowing all facets of $\operatorname{conv}(\mathcal{S})$ is enough to solve the MILP (though this set would still be very large in most cases).

A general cutting plane approach relaxes the integrality restrictions on the variables and solves the resulting LP relaxation over the set \mathcal{P}. If the LP is unbounded or infeasible, so is the MILP. If the solution to the LP is integer, i.e., satisfies constraints (4) and (5), then one has solved the MILP. If not, then one solves a separation problem whose objective is to find a valid inequality that cuts off the fractional solution to the LP relaxation while assuring that all feasible integer points satisfy the inequality-i.e., an inequality that separates the fractional point from the polyhedron $\operatorname{conv}(\mathcal{S})$. Such an inequality is called a cut for short. The algorithm continues until termination in one of two ways: either an integer solution is found (the problem has been solved successfully) or the LP relaxation is infeasible and therefore the integer problem is infeasible.

For ILPs, there are versions of Gomory's method that yield cutting plane algorithms that will produce a solution in a finite number of iterations, at least with the use of exact rational arithmetic. In practice, however, the algorithm could terminate in a third way-it may not be possible to identify a new cut
even though the optimal solution has not been found 568 either due to numerical difficulties arising from 569 accumulated round-off error or because procedures 570 used to generate the cuts are unable to guarantee 571 the generation of a violated inequality, even when 572 one exists. If one terminates the cutting plane 573 procedure because of this third possibility, then, in 574 general, the process has still improved the original 575 formulation and the bound resulting from solving the 576 LP relaxation is closer to the optimal value. By then 577 switching to an implicit enumeration strategy, one may 578 still be able to solve the problem. This hybrid strategy, 579 known as branch and cut, is discussed in the next 580 section.

Advanced Procedures

Branch and Cut
 583

The two basic methods described above can be 584 hybridized into a single algorithm that combines the 585 power of the polyhedral and disjunctive approaches. 586 This method is called branch and cut. A rather sizable 587 literature has sprung up around these methods. Papers 588 describing the basic framework include those of 589 Hoffman and Padberg (1991) and Padberg and 590 Rinaldi (1991). Surveys of the computational issues 591 and components of a modern branch-and-cut solver 592 include Atamtürk and Savelsbergh (2005), Linderoth 593 and Ralphs (2005), and Martin (2001). The major 594 components of the algorithm consist of automatic 595 reformulation and preprocessing procedures (see next 596 section), heuristics that provide good feasible integer 597 solutions, procedures for generating valid inequalities, 598 and procedures for branching. All of these are 599 embedded into a disjunctive search framework, as in 600 the branch-and-bound approach. These components 601 are combined so as to guarantee optimality of the 602 solution obtained at the end of the calculation. The 603 algorithm may also be stopped early to produce a 604 feasible solution along with a bound on the relative 605 distance of the current solution from optimality. This 606 hybrid approach has evolved to be an extremely 607 effective way of solving general MILPs. It is the basic 608 approach taken by all state-of-the-art solvers for MILP. 609

Ideally, the cutting planes generated during the 610 course of the algorithm would be facets of $\operatorname{conv}(\mathcal{S}) .611$ In the early years of integer optimization, considerable 612 research activity was focused on identifying part 613
(or all) of the list of facets for specific combinatorial optimization problems by exploiting the special structure of $\operatorname{conv}(\mathcal{S})$ (Balas and Padberg 1972; Balas 1975; Bauer et al. 2002; Hammer et al. 1975; Nemhauser and Sigismondi 1992; Nemhauser and Trotter 1974; Nemhauser and Vance 1994; Padberg 1973, 1974, 1979a; Pochet and Wolsey 1991; Wolsey 1975, 1976). This led to a wide variety of problem-dependent algorithms that are nevertheless based on the underlying principle embodied in Weyl's theorem. An extensive survey of the use of these techniques in combinatorial optimization is given by Aardal and van Hoesel (1996a, b).

Research on integer optimization is increasingly focused on methods for generating inequalities based purely on the disjunctive structure of the problem and not on properties of a particular class of problems. Part of the reason for this is the need to be able to solve more general MILPs for which even the dimension of $\operatorname{conv}(\mathcal{S})$ is not known. With this approach, it is not possible to guarantee the generation of facets in every iteration, but theoretical advances have resulted in vast improvements in the ability to solve general unstructured integer optimization problems using off-the-shelf software. A survey of cutting plane methods for general MILPs is provided by (Cornuéjols 2008). Other papers on techniques for generating valid inequalities for general MILPs include Balas et al. (1993, 1996, 1999), Gu et al. (1998, 1999, 2000), Nemhauser and Wolsey (1990), Marchand and Wolsey (2001), and Wolsey (1990).

Equally as important as cutting plane generation techniques are branching schemes, though these methods have received far less attention in the literature. Branching methods are generally based on some method of estimating the impact of a given branching disjunction and trying to choose the best one according to certain criteria. Papers discussing branching methods include Achterberg et al. (2005), Fischetti and Lodi (2002), Karamanov and Cornuéjols (2009), and Owen and Mehrotra (2001).

There has been a surge in research on the use of heuristic methods within the branch-cut-cut framework in order to generate good solutions and improve bounds as the search progresses. Many search methods are based on limited versions of the same search procedures used to find globally optimal solutions. The development of such methods has led to
marked improvements in the performance of exact 662 algorithms (Balas and Martin 1980; Balas et al. 2004; 663 Fischetti and Lodi 2002; Nediak and Eckstein 2001). 664 In current state-of-the-art software, multiple heuristics 665 are used because they are likely to produce feasible 666 solutions more quickly than tree search, which helps 667 both to eliminate unproductive subtrees and to 668 calculate improved variable bounds that result in 669 a tighter description of the problem. These heuristics 670 include techniques for searching within the local 671 neighborhood of a given linear feasible solutions for 672 integer solutions using various forms of local search. 673 Achtenberg and Berthold (2007), Danna et al. (2005), 674 Fischetti et al. (2009), and Rothberg (2007) provide 675 descriptions of heuristics built into current packages. 676

Automatic Reformulation
 677

Before solving an integer optimization problem, the 678 first step is that of formulation, in which a conceptual 679 model is translated into the form (1)-(6). There are 680 often different ways of mathematically representing 681 the same problem, both because different systems of 682 the form (1)-(6) may define precisely the same set 683 \mathcal{S} and because it may be possible to represent the 684 same conceptual problem using different sets of 685 variables. There are a number of different ways in 686 which the conceptual model can be translated into 687 a mathematical model, but the most common is to use 688 an algebraic modeling language, such as AIMMS, 689 AMPL (Fourer et al. 1993), GAMS (Brooke et al. 690 1988), MPL, or OPL Studio.

691
The time required to obtain an optimal solution to 692 a large integer optimization problem usually depends 693 strongly on the way it is formulated, so much research 694 has been directed toward the effective automatic 695 reformulation techniques. Unlike linear optimization 696 problems, the number of variables and constraints 697 representing an integer optimization problem may not 698 be indicative of its difficulty. In this regard, it is 699 sometimes advantageous to use a model with a larger 700 number of integer variables, a larger number of 701 constraints, or even both. Discussions of alternative 702 formulation approaches are given in Guignard and 703 Spielberg (1981) and Williams (1985), and a 704 description of approaches to automatic reformulation 705 or preprocessing is given in Anderson and Anderson 706 (1995), Atamturk and Savelsbergh (2000), Brearley 707
et al. (1975), Hoffman and Padberg (1991), Roy and Wolsey (1987), and Savelsbergh (1994).

A variety of difficult problems have been solved by reformulating them as either set-covering or set-partitioning problems having an extraordinary number of variables. Because for even small instances, such reformulations may be too large to solve directly, a technique known as column generation, which began with the seminal work of Gilmore and Gomory (1961) on the cutting stock problem, is employed. An overview of such transformation methods can be found in Barnhart et al. (1998). For specific implementations, for the vehicle routing problem, see Chabrier (2006), for the bandwidth packing problem, see Hoffman and Villa (2007) and Parker and Ryan (1995), for the generalized assignment problem, see Savelsbergh (1997), and for alternative column-generation strategies for solving the cutting stock problem see Vance et al. (1994). Bramel and Simchi-Levi (1997) have shown that the set-partitioning formulation for the vehicle routing problem with time windows is very effective in practice-that is, the relative gap between the fractional linear optimization solutions and the global integer solution is small. Similar results have been obtained for the bin-packing problem (Chan et al. 1998a) and for the machine-scheduling problem (Chan et al. 1998b).

Decomposition Methods

Relaxing the integrality restriction is not the only approach to relaxing the problem. An alternative approach to the solution to integer optimization problems is to relax a set of complicating constraints in order to obtain a more tractable model. This technique is effective when the problem to be solved is obtained by taking a well-solved base problem and adding constraints specific to a particular application. By capitalizing on the ability to solve the base problem, one can obtain bounds that are improved over those obtained by solving the LP relaxation. These bounding methods can then be used to drive a branch-and-bound algorithm, as described earlier. Such bounding methods are called constraint decomposition methods or simply decomposition methods, since they involve decomposing the set of constraints. By removing the complicating constraints from the constraint set, the resulting subproblem is
frequently considerably easier to solve. The latter is 755 a necessity for the approach to work because the 756 subproblems must be solved repeatedly. The bound 757 found by decomposition can be tighter than that 758 found by linear optimization, but only at the expense 759 of solving subproblems that are themselves integer 760 optimization problems. Decomposition requires that 761 one understand the structure of the problem being 762 solved in order to then relax the constraints that are 763 complicating.

The bound resulting from a particular 765 decomposition can be computed using two 766 different computational techniques-Dantzig-Wolfe 767 decomposition (Dantzig and Wolfe 1960; 768 Vanderbeck 2000) (column generation) and 769 Lagrangian relaxation (Fisher 1981; Geoffrion 1974; 770 Held and Karp 1970). In the former case, solutions to 771 the base problem are generated dynamically and 772 combined in an attempt to obtain a solution satisfying 773 the complicating constraints. In the latter case, the 774 complicating constraints are enforced implicitly by 775 penalizing their violation in the objective function. 776 Overviews of the theory and methodology behind 777 decomposition methods and how they are used in 778 integer programming can be found in Ralphs and 779 Galati (2005) and Vanderbeck and Wolsey (2010). 780 A related approach is that of Lagrangian 781 decomposition (Guignard and Kim 1987), which 782 consists of isolating sets of constraints so as to obtain 783 multiple, separate, easy-to-solve subproblems. The 784 dimension of the problem is increased by creating 785 copies of variables that link the subsets and adding 786 constraints that require these copies to have the same 787 value as the original in any feasible solution. When 788 these constraints are relaxed in a Lagrangian fashion, 789 the problem decomposes into blocks that can be treated 790 separately.

Most decomposition-based strategies involve 792 decomposition of constraints, but there are cases in 793 which it may make sense to decompose the variables. 794 These techniques work well in the case when fixing 795 some subset of the variables (the complicating 796 variables) to specific values reduces the problem to 797 one that is easy to solve. Benders' decomposition 798 algorithm projects the problem into the space of 799 these complicating variables and treats the 800 remaining variables implicitly by adding so-called 801 Benders cuts violated by solutions that do not have 802
a feasible completion and adding a term to the objective function representing the cost of completion for any given set of value of the complicating variables (Benders 1962). For a survey on Benders cuts, see Hooker (2002).

Related Topics

There are a number of topics related to combinatorial and integer optimization that have not been covered here. One such topic is the complexity of integer optimization problems (Garey and Johnson 1979), an area of theoretical study that has increased our understanding of the implicit difficulty of integer optimization dramatically. Another important topic is that of heuristic solution approaches-that is, techniques for obtaining good but not necessarily optimal solutions to integer optimization problems quickly. In general, heuristics do not provide any guarantee as to the quality of the solutions they produce, but are very important in practice for a variety of reasons. Primarily, they may provide the only usable solution to very difficult optimization problems for which the current exact algorithms fail to produce one. Research into heuristic algorithms has applied techniques from the physical sciences to the approximate solution of combinatorial problems. For surveys of research in simulated annealing (based on the physical properties of heat), genetic algorithms (based on properties of natural mutation), and neural networks (models of brain function) see Hansen (1986), Goldberg (1989), and Zhang (2010), respectively. Glover and Laguna (1998) have generalized some of the attributes of these methods into a method called tabu search. Worst-case and probabilistic analysis of heuristics are discussed in Cornuejols et al. (1980), Karp (1976), and Kan (1986).

Another developing trend is the use of approaches from other disciplines in which optimization problems also arise. In some cases, multiple approaches can be used to handle difficult optimization problems by merging alternative strategies into a single algorithm (the so-called algorithm portfolio approach). As an example, constraint-logic programming was developed by computer scientists in order to work on problems of finding feasible solutions to a set of constraints. During the last decade, many of the advances of constraint-logic programming have been
embedded into mathematical programming algorithms 849 in order to handle some of the difficult challenges of 850 combinatorial optimization such as those related to 851 scheduling where there is often significant symmetry. 852 For example, see Hooker (2007) and Rasmussen and 853 Trick (2007) for some applications that use both 854 Benders decomposition and constraint programming 855 to handle difficult scheduling problems. For research 856 that relates issues in computational logic to those 857 associated with combinatorial optimization see 858 McAloon and Tretkoff (1996).
See 860

- Air Traffic Management 861
- Airline Industry Operations Research 862
- Assignment Problem 863
- Bender's Decomposition 864
Bin Packing 865
Branch and Bound 866
- Capital Budgeting 867
- Chinese Postman Problem 868
- Combinatorial Auctions 869
- Combinatorial Explosion 870
Combinatorics 871
Facility Location 872
- Fathom 873
- Global Optimum 874
- Heuristics 875
- Lagrangian Function 876
- Linear Programming 877
Local Optimum 878
- Networks 879
- Packing Problem 880
- Relaxed Problem 881
- Set-Covering Problem 882
- Set-Partitioning Problem 883
- Tabu Search 884
- Traveling Salesman Problem 885
References 886

Aardal, K., \& van Hoesel, C. (1996a). Polyhedral techniques in 887 combinatorial optimization I: Applications and 888 computations. Statistica Neerlandica, 50, 3-26.

889

Aardal, K., \& van Hoesel, C. (1996b). Polyhedral techniques in combinatorial optimization II: Applications and computations. Statistica Neerlandica, 50, 3-26.
Abara, J. (1989). Applying integer linear programming to the fleet assignment problem. Interfaces, 19, 20-28.
Achtenberg, T., \& Berthold, T. (2007). Improving the feasibility pump. Discrete Mathematics, 4, 77-86.
Achterberg, T., Koch, T., \& Martin, A. (2005). Branching rules revisited. Operations Research Letters, 33, 42-54.
Ahuja, R., Magnanti, T., \& Orlin, J. (1993). Network flows: Theory, algorithms, and applications. Englewood Cliffs, NJ: Prentice Hall.
Anderson, E., \& Anderson, K. (1995). Presolving in linear programming. Mathematical Programming, 71, 221-245.
Applegate, D., \& Cook, W. (1991). A computational study of the job-shop scheduling problem. INFORMS Journal on Computing, 3, 149-156.
Applegate, D., Bixby, R., Chvátal, V., \& Cook, W. (2006). The traveling salesman problem: A computational study. Princeton, NJ: Princeton University Press.
Atamturk, A., \& Savelsbergh, M. (2000). Conflict graphs in solving integer programming problems. European Journal of Operational Research, 121, 40-55.
Atamtürk, A., \& Savelsbergh, M. (2005). Integer-programming software systems. Annals of Operations Research, 140, 67-124.
Avner, P. (2001). A radiation hybrid transcript may of the mouse genome. Nature Genetics, 29, 194-200.
Balas, E. (1975). Facets of the knapsack polytope. Mathematical Programming, 8, 146-164.
Balas, E. (1998). Disjunctive programming: Properties of the convex hull of feasible points. Discrete Applied Mathematics, 89, 3-44.
Balas, E., \& Martin, R. (1980). Pivot and complement: A heuristic for 0-1 programming. Management Science, 26, 86-96.
Balas, E., \& Padberg, M. (1972). On the set-covering problem. Operations Research, 20, 1152-1161.
Balas, E., \& Padberg, M. (1976). Set partitioning: A survey. SIAM Review, 18, 710-760.
Balas, E., Ceria, S., \& Corneujols, G. (1993). A lift-and-project cutting plane algorithm for mixed 0-1 programs. Mathematical Programming, 58, 295-324.
Balas, E., Ceria, S., \& Cornuejols, G. (1996). Mixed 0-1 programming by lift-and-project in a branch-and-cut framework. Management Science, 42, 1229-1246.
Balas, E., Ceria, S., Cornuejols, G., \& Natraj, N. (1999). Gomory cuts revisited. Operations Research Letters, 19, 1-9.
Balas, E., Schmieta, S., \& Wallace, C. (2004). Pivot and shift-A mixed integer programming heuristic. Discrete Optimization, 1, 3-12.
Barahona, F., Grötschel, M., Jünger, M., \& Reinelt, G. (1988). An application of combinatorial optimization to statistical physics and circuit layout design. Operations Research, 36, 493-513.
Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., \& Vance, P. H. (1998). Branch and price: Column generation for solving huge integer programs. Operations Research, 46, 316-329.
Bauer, P., Linderoth, J., \& Savelsbergh, M. (2002). A branch and cut approach to the cardinality constrained circuit problem. Mathematical Programming, 9, 307-348.

Benders, J. F. (1962). Partitioning procedures for solving mixed 951 variable programming problems. Numerische Mathematik, 4, 952 238-252.
Bertsimas, D., \& Weismantel, R. (2005). Optimization over 954 integers. Cambridge, MA: Dynamic Ideas. 955
Borndörfer, R., \& Weismantel, R. (2000). Set packing 956 relaxations of some integer programs. Mathematical 957 Programming, 88, 425-450. 958
Bramel, J., \& Simchi-Levi, D. (1997). On the effectiveness of set 959 covering formulations for the vehicle routing problem with 960 time windows. Operations Research, 45, 295-301. 961
Brearley, A., Mitra, G., \& Williams, H. (1975). Analysis of 962 mathematical programming problems prior to applying the 963 simplex method. Mathematical Programming, 8, 54-83. 964
Brooke, A., Kendrick, D., \& Meeraus, A. (1988). GAMS, 965 a user's guide. Redwood City, CA: The Scientific Press. 966
Chabrier, A. (2006). Vehicle routing problem with elementary 967 shortest path based column generation. Computers and 968 Operations Research, 33(10), 2972-2990. 969
Chan, L., Muriel, A., \& Simchi-Levi, D. (1998a). Parallel 970 machine scheduling, linear programming, and parameter 971 list scheduling heuristics. Operations Research, 46, 972 729-741.
Chan, L., Simchi-Levi, D., \& Bramel, J. (1998b). Worst-case 974 analyses, linear programming and the bin-packing problem. 975 Mathematical Programming, 83, 213-227.

976
Chvátal, V. (1983). Linear programming. New York: W. H. 977 Freeman.
Cornuéjols, G. (2008). Valid inequalities for mixed integer linear 979 programs. Mathematical Programming B, 112, 3-44. 980
Cornuejols, G., Nemhauser, G., \& Wolsey, L. (1980). 981 Worst-case and probabilistic analysis of algorithms for 982 a location problem. Operations Research, 28, 847-858. 983
Cramton, P., Shoham, Y., \& Steinberg, R. (2006). 984 Combinatorial auctions. Cambridge, MA: MIT Press. 985
Danna, E., Rothberg, E., \& LePape, C. (2005). Exploring 986 relaxation induced neighborhoods to improve MIP 987 solutions. Mathematical Programming, 102, 71-90.
Dantzig, G., \& Wolfe, P. (1960). Decomposition principle for 989 linear programs. Operations Research, 8, 101-111.

990
Drezner, Z., \& Hamacher, H. (2004). Facility location: 991 Applications and theory. Berlin: Springer.

992
Edmonds, J., \& Johnson, E. L. (1973). Matching, Euler tours, 993 and the Chinese postman. Mathematical Programming, 5, 994 88-124.

995
Fischetti, M., \& Lodi, A. (2002). Local branching. Mathematical 996 Programming, 98, 23-47.

997
Fischetti, M., Lodi, A., \& Salvagnin, D. (2009). Just MIP It! In 998 V. Maniezzo, T. Stuetzle, \& S. Voss (Eds.), 999 MATHEURISTICS: Hybridizing metaheuristics and 1000 mathematical programming (pp. 39-70). Berlin: Springer. 1001
Fisher, M. L. (1981). The lagrangian method for solving integer 1002 programming problems. Management Science, 27, 1-18. 1003
Fourer, R., Gay, D. M., \& Kernighan, B. W. (1993). AMPL: 1004 A modeling language for mathematical programming. San 1005 Francisco: The Scientific Press.

1006
Garey, M. R., \& Johnson, D. S. (1979). Computers and 1007 intractability: A guide to the theory of NP-completeness. 1008 New York: W. H. Freeman.

1010 Geoffrion, A. (1974). Lagrangian relaxation for integer programming. Mathematical Programming Study, 2, 82-114.
Gilmore, P. C., \& Gomory, R. E. (1961). A linear programming approach to the cutting stock problem. Operations Research, 9, 849-859.
Glover, F., \& Laguna, M. (1998). Tabu search. Berlin: Springer.
Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley.
Golden, B., Raghavan, S., \& Wasail, E. (2010). The vehicle routing problem: Latest advances and new challenges. Berlin: Springer.
Gomory, R. E. (1958). Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Monthly, 64, 275-278.
Gomory, R. E. (1960). An algorithm for the mixed integer problem (Tech. Rep. RM-2597). The RAND Corporation. Santa Monica, California.
Gu, Z., Nemhauser, G. L., \& Savelsbergh, M. W. P. (1998). Cover inequalities for 0-1 linear programs: Computation. INFORMS Journal on Computing, 10, 427-437.
Gu, Z., Nemhauser, G. L., \& Savelsbergh, M. W. P. (1999). Lifted flow covers for mixed 0-1 integer programs. Mathematical Programming, 85, 439-467.
Gu, Z., Nemhauser, G. L., \& Savelsbergh, M. W. P. (2000). Sequence independent lifting. Journal of Combinatorial Optimization, 4, 109-129.
Guignard, M., \& Kim, S. (1987). Lagrangian decomposition: A model yielding stronger lagrangian bounds. Mathematical Programming, 39, 215-228.
Guignard, M., \& Spielberg, K. (1981). Logical reduction methods in zero-one programming: Minimal preferred inequalities. Operations Research, 29, 49-74.
Hammer, P. L., Johnson, E. L., \& Peled, U. N. (1975). Facets of regular 0-1 polytopes. Mathematical Programming, 8, 179-206.
Hane, C., Barnhart, C., Johnson, E., Marsten, R., Nemhauser, G., \& Sigismondi, G. (1995). The fleet assignment problem: Solving a large-scale integer program. Mathematical Programming, 70, 211-232.
Hansen, P. (1986). The steepest ascent mildest descent heuristic for combinatorial programming. Proceedings of Congress on Numerical Methods in Combinatorial Optimization, Italy.
Held, M., \& Karp, R. M. (1970). The traveling salesman problem and minimum spanning trees. Operations Research, 18, 1138-1162.
Hoffman, K., \& Padberg, M. (1985). LP-based combinatorial problem solving. Annals of Operations Research, 4, 145-194.
Hoffman, K. L., \& Padberg, M. W. (1991). Improving LP-representations of zero-one linear programs for branch and cut. ORSA Journal on Computing, 3, 121-134.
Hoffman, K., \& Padberg, M. (1993). Solving airline crew scheduling problems by branch-and-cut. Management Science, 39, 667-682.
Hoffman, K., \& Villa, C. (2007). A column-generation and branch-and-cut approach to the bandwidth-packing problem. Journal of Research of the National Institute of Standards and Technology, 111, 161-185.
Hooker, J. (2002). Logic, optimization, and constraint programming. INFORMS Journal on Computing, 14, 295-321.

Hooker, J. (2007). Planning and scheduling by logic-based 1070 benders decomposition. Operations Research, 55, 588-602. 1071
Jünger, M., Liebling, T., Naddef, D., Nemhauser, G., 1072 Pulleyblank, W., Reinelt, G. (2010). Fifty years of integer 1073 programming: 1958-2008. Berlin: Springer.
Kan, A R (1986) An introduction to the analysis of approximation algorithms. Discrete Applied Mathematics, 1076 14, 111-134.
Karamanov, M., \& Cornuéjols, G. (2009). Branching on general 1078 disjunctions. Mathematical Programming, 128, 403-406. 1079
Karp, R. (1976). Probabilistic analysis of partitioning algorithms 1080 for the traveling salesman problem. In J. F. Traub (Ed.), 1081 Algorithms and complexity: New directions and recent 1082 results (pp. 1-19). New York: Academic.

1083
Land, A. H., \& Doig, A. G. (1960). An automatic method for 1084 solving discrete programming problems. Econometrica, 28, 1085 497-520.

1086
Linderoth, J., \& Ralphs, T. (2005). Noncommercial software for 1087 mixed-integer linear programming. In J. Karlof (Ed.), Integer 1088 programming: Theory and practice (pp. 253-303). Boca 1089 Raton, FL: CRC Press.
Linderoth, J. T., \& Savelsbergh, M. W. P. (1999). 1091 A computational study of search strategies in mixed integer 1092 programming. INFORMS Journal on Computing, 11, 1093 173-187.

1094
Marchand, H., \& Wolsey, L. (2001). Aggregation and mixed 1095 integer rounding to solve MIPs. Operations Research, 49, 1096 363-371.

1097
Markowitz, H., \& Manne, A. (1957). On the solution of discrete 1098 programming problems. Econometrica, 2, 84-110.
Martello, S., \& Toth, P. (1990). Knapsack problems. New York: Wiley.

1099

Martin, A. (2001). Computational issues for branch-and-cut 1102 algorithms. In M. Juenger \& D. Naddef (Eds.), 1103 Computational combinatorial optimization (pp. 1-25). 1104 Berlin: Springer.
McAloon, K., \& Tretkoff, C. (1996). Optimization and 1106 computational logic. New York: Wiley. (1970). Branch-and-bound methods: General 1108 formulation and properties. Operations Research, 18, 1109 24-34.

1110
Nediak, M., \& Eckstein, J. (2001). Pivot, cut, and dive: 1111 A heuristic for mixed 0-1 integer programming (Tech. Rep. 1112 RUTCOR Research Report RRR 53-2001). Rutgers 1113 University, Newark, New Jersey.
Nemhauser, G. L., \& Sigismondi, G. (1992). A strong cutting 1115 plane/branch-and-bound algorithm for node packing. 1116 Journal of the Operational Research Society, 43, 443-457. 1117
Nemhauser, G. L., \& Trotter, L. E., Jr. (1974). Properties of 1118 vertex packing and independence system polyhedra. 1119 Mathematical Programming, 6, 48-61.

1120
Nemhauser, G., \& Vance, P. (1994). Lifted cover facets of the 1121 0-1 knapsack polytope with GUB constraints. Operations 1122 Research Letters, 16, 255-264.

1123
Nemhauser, G., \& Wolsey, L. A. (1988). Integer and 1124 combinatorial optimization. New York: Wiley. 1125
Nemhauser, G., \& Wolsey, L. (1990). A recursive procedure for 1126 generating all cuts for $0-1$ mixed integer programs. 1127 Mathematical Programming, 46, 379-390.
Odlyzko, A. M. (1990). The rise and fall of knapsack 1129 cryptosystems. In C. Pomerance (Ed.), Cryptology and 1130

1131
1132
1133
1134
1135
1136
computational number theory (pp. 75-88). Ann Arbor: American Mathematical Society.
Owen, J., \& Mehrotra, S. (2001). Experimental results on using general disjunctions in branch-and-bound for general-integer linear programs. Computational Optimization and Applications, 20(2).
Padberg, M. (1973). On the facial structure of set packing polyhedra. Mathematical Programming, 5, 199-215.
Padberg, M. (1974). Perfect zero-one matrices. Mathematical Programming, 6, 180-196.
Padberg, M. (1979a). Covering, packing and knapsack problems. Annals of Discrete Mathematics, 4, 265-287.
Padberg, M. W. (1979b). A note on 0-1 programming. Operations Research, 23, 833-837.
Padberg, M. W., \& Rinaldi, G. (1991). A branch and cut algorithm for the solution of large scale traveling salesman problems. SIAM Review, 33, 60-100.
Papadimitriou, C., \& Steiglitz, K. (1982). Combinatorial optimization: Algorithms and complexity. New Jersey: Prentice-Hall.
Parker, R., \& Rardin, R. (1988). Discrete optimization. San Diego: Academic.
Parker, M., \& Ryan, J. (1995). A column generation algorithm for bandwidth packing. Telecommunication Systems, 2, 185-196.
Pinedo, M. (2008). Scheduling: Theory, algorithms, and systems. Berlin: Springer.
Pochet, Y., \& Wolsey, L. (1991). Solving multi-item lot sizing problems using strong cutting planes. Management Science, 37, 53-67.
Ralphs, T., \& Galati, M. (2005). Decomposition in integer programming. In J. Karlof (Ed.), Integer programming: Theory and practice (pp. 57-110). Boca Raton, FL: CRC Press.
Rasmussen, R., \& Trick, M. (2007). A benders approach to the constrained minimum break problem. European Journal of Operational Research, 177, 198-213.
Ravikumar, C. (1996). Parallel methods for VLSI layout design. Norwood, NJ: Ablex Publishing Corporation.
Rendl, F. (2010). Semidefinite relaxations for integer programming. In M. Jünger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, \& L. Wolsey (Eds.), Fifty years of integer programming: 1958-2008 (pp. 687-726). Berlin: Springer.
Rothberg, E. (2007). An evolutionary algorithm for polishing mixed integer programming solutions. INFORMS Journal on Computing, 19, 534-541.
Roy, T. J. V., \& Wolsey, L. A. (1987). Solving mixed integer 0-1 programs by automatic reformulation. Operations Research, 35, 45-57.

Savelsbergh, M. W. P. (1994). Preprocessing and probing 1181 techniques for mixed integer programming problems. 1182 ORSA Journal on Computing, 6, 445-454.

182
Savelsbergh, M. W. P. (1997). A branch and price algorithm for 1184 the generalized assignment problem. Operations Research, 1185 45, 831-841.

1186
Schrijver, A. (1986). Theory of linear and integer programming. 1187 Chichester: Wiley.

1188
Schrijver, A. (2003). Combinatorial optimization: Polyhedra 1189 and efficiency. Berlin: Springer.
Shah, R. (1998). Optimization problems in SONET/WDM 1191 ring architecture. Master's Essay, Rutgers University, 1192 Newark, NJ.
Vance, P. H., Barnhart, C., Johnson, E. L., \& Nemhauser, G. L. 1194 (1994). Solving binary cutting stock problems by column 1195 generation and branch and bound. Computational 1196 Optimization and Applications, 3, 111-130
Vance, P., Barnhart, C., Johnson, E., \& Nemhauser, G. (1997). 1198 Airline crew scheduling: A new formulation and 1199 decomposition algorithm. Operations Research, 45, 188-200. 1200
Vanderbeck, F. (2000). On Dantzig-Wolfe decomposition in 1201 integer programming and ways to perform branching in 1202 a branch-and-price algorithm. Operations Research, 48, 1203 111-128.
Vanderbeck, F., \& Wolsey, L. (2010), Reformulation and 1205 decomposition of integer programs. In M. Jünger, T. 1206 Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. 1207 Reinelt, G. Rinaldi, \& L. Wolsey (Eds.), Fifty years of 1208 integer programming: 1958-2008 (pp. 431-504). Berlin: 1209 Springer.

1210
Weingartner, H. (1963). Mathematical programming and the 1211 analysis of capital budgeting problems. Englewood Cliffs, 1212 NJ: Prentice Hall.

1213
Weyl, H. (1935). Elementare theorie der konvexen polyheder. 1214 Commentarii Mathematici Helvetici, 7, 290-306. 1215
Williams, H. (1985). Model building in mathematical 1216 programming (2nd ed.). New York: Wiley.
Wolsey, L. A. (1975). Faces for a linear inequality in 0-1 1218 variables. Mathematical Programming, 8, 165-178. 1219
Wolsey, L. A. (1976). Facets and strong valid inequalities for 1220 integer programs. Operations Research, 24, 367-372. 1221
Wolsey, L. A. (1990). Valid inequalities for mixed integer 1222 programs with generalized and variable upper bound 1223 constraints. Discrete Applied Mathematics, 25, 251-261. 1224
Wolsey, L. A. (1998). Integer programming. New York: Wiley. 1225
Zhang, X. (2010). Neural networks in optimization. Berlin: 1226 Springer.

1227

