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10 Introduction

11 Integer optimization problems are concerned with the

12 efficient allocation of limited resources to meet

13 a desired objective when some of the resources in

14 question can only be divided into discrete parts. In

15 such cases, the divisibility constraints on these

16 resources, which may be people, machines, or other

17 discrete inputs, may restrict the possible alternatives to

18 a finite set. Nevertheless, there are usually too many

19 alternatives to make complete enumeration a viable

20 option for instances of realistic size. For example, an

21 airline may need to determine crew schedules that

22 minimize the total operating cost, an automotive

23 manufacturer may want to determine the optimal mix

24 of models to produce in order to maximize profit, or

25 a flexible manufacturing facility may want to schedule

26 production for a plant without knowing precisely what

27 parts will be needed in future periods. In today’s

28 changing and competitive industrial environment, the

29 difference between ad hoc planning methods and those

30 that use sophisticated mathematical models to

31 determine an optimal course of action can determine

32 whether or not a company survives.

33A common approach to modeling optimization

34problems with discrete decisions is to formulate them

35as mixed integer optimization problems. This entry

36focuses on problems in which the functions required

37to represent the objective and constraints are additive,

38i.e., linear functions. Such a problem is called a mixed

39integer linear optimization problem (MILP) and its

40general form is
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lj � xj � uj 8j 2 N ¼ B [ I [ C; (3)

xj 2 f0; 1g 8j 2 B; (4)

xj 2  8j 2 I; and (5)

xj 2  8j 2 C: (6)

41A solution to (1)–(6) is a set of values assigned

42to the variables xj, j ∈ N. The objective is to find a

43solution that maximizes the weighted sum (1), where

44the coefficients cj, j ∈ N are given. B is the set of

45indices of binary variables (those that can take on

46only values 0 or 1), I is the set of indices of integer

47variables (those that can take on any integer value), and

48C is the set of indices of continuous variables.
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49 As indicated above, each of the first set of constraints

50 (2) can be either an inequality constraint (“�” or “�”)

51 or an equality constraint (“¼”). The data lj and uj are
52 the lower- and upper-bound values, respectively, for

53 variable xj, j ∈ N.

54 This general class of problems has many important

55 special cases. When B ¼ I ¼ ∅, we have what is

56 known as a linear optimization problem (LP). If

57 C ¼ I ¼ ∅, then the problem is referred to as a (pure)

58 binary integer linear optimization problem (BILP).

59 Finally, if C ¼ ∅, the problem is called a (pure)

60 integer linear optimization problem (ILP). Otherwise,

61 the problem is simply a MILP. Throughout this

62 discussion, we refer to the set of points satisfying

63 (1)–(6) as S, and the set of points satisfying all but

64 the integrality restrictions (4)–(5) asP. The problem of

65 optimizing over P with the same objective function as

66 the original MILP is called the LP relaxation and arises

67 frequently in algorithms for solving MILPs.

68 A class of problems closely related to BILPs are the

69 combinatorial optimization problems (COPs). A COP

70 is defined by a ground set E, a set F of subsets of e that
71 are called the feasible subsets, and a cost ce associated

72 with each element e ∈ E. Each feasible subset F ∈ F
73 has an associated (additive) cost taken to be Se ∈F ce.

74 The goal of a COP is find the subset F ∈ F of

75 minimum cost. The set F can often be described as

76 the set of solutions to a BILP by associating a binary

77 variable xe with each member e of the ground set,

78 indicating whether or not to include it in the selected

79 subset. For this reason, combinatorial optimization and

80 integer optimization are closely related and COPs are

81 sometimes informally treated as being a subclass of

82 MILPs, though there are COPs that cannot be

83 formulated as MILPs.

84 Solution of an MILP involves finding one or more

85 best (optimal) solutions from the set S. Such problems

86 occur in almost all fields of management (e.g.,

87 finance, marketing, production, scheduling,

88 inventory control, facility location and layout,

89 supply chain management), as well as in many

90 engineering disciplines (e.g., optimal design of

91 transportation networks, integrated circuit design,

92 design and analysis of data networks, production and

93 distribution of electrical power, collection and

94 management of solid waste, determination of

95 minimum energy states for alloy construction,

96 planning for energy resource problems, scheduling

97of lines in flexible manufacturing facilities, and

98design of experiments in crystallography).

99This article gives a brief overview of the related

100fields of integer and combinatorial optimization. These

101fields have by now accumulated a rich history and

102a rich mathematical theory. Texts covering the theory

103of linear and integer linear optimization include those

104of Bertsimas and Weismantel (2005), Chvátal (1983),

105Nemhauser and Wolsey (1988), Parker and Rardin

106(1988), Schrijver (1986), and Wolsey (1998).

107Overviews of combinatorial optimization are

108provided by Papadimitriou and Steiglitz (1982) and

109Schrijver (2003). J€unger et al. (2010) have produced

110a marvelous and comprehensive volume containing an

111overview of both the history and current state of the art

112in integer and combinatorial optimization.

113Applications

114This section describes some classical integer and

115combinatorial optimization models to provide an

116overview of the diversity and versatility of this field.

117Knapsack Problems

118Suppose one wants to fill a knapsack that has a weight

119capacity limit of W with some combination of items

120from a list of n candidates, each with weight wi and

121value vi, in such a way that the value of the items

122packed into the knapsack is maximized. This problem

123has a single linear constraint (that the weight of the

124items selected not exceed W), a linear objective

125function (to maximize the sum of the values of the

126items in the knapsack), and the added restriction that

127each item either be in the knapsack or not—it is not

128possible to select a fractional portion of an item. For

129solution approaches specific to the knapsack problem,

130see Martello and Toth (1990).

131Although this problem might seem too simplistic to

132have many practical applications, the knapsack

133problem arises in a surprisingly wide variety of fields.

134For example, one implementation of the public-key

135cryptography systems that are pervasive in security

136applications depends on the solution of knapsack

137problems to determine the cryptographic keys

138(Odlyzko 1990). The system depends on the fact that,

139despite their simplicity, some knapsack problems are

140extremely difficult to solve.

I 2 Integer and Combinatorial Optimization
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141 More importantly, however, the knapsack

142 problem arises as a substructure in many other

143 important combinatorial problems. For example,

144 machine-scheduling problems involve restrictions on

145 the capacities of the machines to be scheduled (in

146 addition to other constraints). Such a problem

147 involves assigning a set of jobs to a machine in such

148 a way that the capacity constraint is not violated. It is

149 easy to see that such a constraint is of the same form as

150 that of a knapsack problem. Often, a component of the

151 solution method for problems with knapsack

152 constraints involves solving the knapsack problem

153 itself, in isolation from the original problem

154 (see Savelsbergh (1997)). Another important example

155 in which knapsack problems arise is the

156 capital budgeting problem. This problem involves

157 finding a subset of the set of (possibly) thousands of

158 capital projects under consideration that will yield the

159 greatest return on investment, while satisfying

160 specified financial, regulatory, and project

161 relationship requirements (Markowitz and Manne

162 1957; Weingartner 1963). Here also, the budget

163 constraint takes the same form as that of the

164 knapsack problem.

165 Network and Graph Problems

166 Many optimization problems can be represented by

167 a network, formally defined as a set of nodes and

168 a set of arcs (unidirectional connections specified as

169 ordered pairs of nodes) or edges (bidirectional

170 connections specified as unordered pairs of nodes)

171 connecting those nodes, along with auxiliary data

172 such as costs and capacities on the arcs (the nodes

173 and arcs together without the auxiliary data form

174 a graph). Solving such network problems involves

175 determining an optimal strategy for routing certain

176 commodities through the network. This class of

177 problems is thus known as network flow problems.

178 Many practical problems arising from physical

179 networks, such as city streets, highways, rail systems,

180 communication networks, and integrated circuits, can

181 be modeled as network flow problems. In addition,

182 there are many problems that can be modeled as

183 network flow problems even when there is no

184 underlying physical network. For example, in the

185 assignment problem, one wishes to assign people to

186 jobs in a way that minimizes the cost of the assignment.

187 This can be modeled as a network flow problem by

188creating a network in which one set of nodes represents

189the people to be assigned, and another set of nodes

190represents the possible jobs, with an arc connecting

191a person to a job if that person is capable of

192performing that job. A general survey of applications

193and solution procedures for network flow problems is

194given by Ahuja et al. (1993).

195Space-time networks are often used in scheduling

196applications. Here, one wishes to meet specific

197demands at different points in time. To model this

198problem, different nodes represent the same entity at

199different points in time. An example of the many

200scheduling problems that can be represented as

201a space-time network is the airline fleet assignment

202problem, which requires that one assign specific

203planes to prescheduled flights at minimum cost

204(Abara 1989; Hane et al. 1995). Each flight must

205have one and only one plane assigned to it, and

206a plane can be assigned to a flight only if it is large

207enough to service that flight and only if it is on the

208ground at the appropriate airport, serviced and ready to

209depart when the flight is scheduled for takeoff. The

210nodes represent specific airports at various points in

211time and the arcs represent the flow of aircraft of

212a variety of types into and out of each airport. There

213are layover arcs that permit a plane to stay on the

214ground from one time period to the next, service arcs

215that force a plane to be out of duty for a specified

216amount of time, and connecting arcs that allow

217a plane to fly from one airport to another without

218passengers.

219A variety of important combinatorial problems

220are graph based, but do not involve flows. Such

221graph-based combinatorial problems include the

222node-coloring problem, the objective of which is to

223determine the minimum number of colors needed to

224color each node of a graph in order that no pair of

225adjacent nodes (nodes connected by an edge) share

226the same color; the matching problem, the objective

227of which is to find a maximum weight collection of

228edges such that each node is incident to at most one

229edge; the maximum clique problem, the objective of

230which is to find the largest subgraph of the original

231graph such that every node is connected to every other

232node in the subgraph; and the minimum cut problem,

233the objective of which is to find a minimum weight

234collection of edges that (if removed) would disconnect

235a set of nodes s from a set of nodes t.

Integer and Combinatorial Optimization 3 I
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236 Although these graph-based combinatorial

237 optimization problems might appear, at first glance,

238 to be interesting only from a mathematical

239 perspective and to have little application to the

240 decision-making that occurs in management or

241 engineering, their domain of application is

242 extraordinarily broad. The four-color problem, e.g.,

243 which is the question of whether a map can be

244 colored with four colors or less, is a special case of

245 the node-coloring problem. The maximum clique

246 problem has important implications in the growing

247 field of social network analysis. The minimum

248 cut problem is used in analyzing the properties of

249 real-world networks, such as those arising in

250 communications and logistics applications.

251 Location, Routing, and Scheduling Problems

252 Many network-based combinatorial problems involve

253 finding a route through a given graph satisfying

254 specific requirements. In the Chinese postman

255 problem, one wishes to find a shortest walk

256 (a connected sequence of arcs) through a network

257 such that the walk starts and ends at the same node

258 and traverses every arc at least once (Edmonds and

259 Johnson 1973). This models the problem faced by

260 a postal delivery worker attempting to minimize the

261 number traversals of each road segment on a given

262 postal route. If one instead requires that each node be

263 visited exactly once, the problem becomes the

264 notoriously difficult traveling salesman problem

265 (Applegate et al. 2006). The traveling salesman

266 problem has numerous applications within the routing

267 and scheduling realm, as well as in other areas, such as

268 genome sequencing (Avner 2001), the routing of

269 SONET rings (Shah 1998), and the manufacturing of

270 large-scale circuits (Barahona et al. 1988; Ravikumar

271 1996). The well-known vehicle routing problem is

272 a generalization in which multiple vehicles must each

273 follow optimal routes subject to capacity constraints

274 in order to jointly service a set of customers

275 (Golden et al. 2010).

276 A typical scheduling problem involves determining

277 the optimal sequence in which to execute a set of jobs

278 subject to certain constraints, such as a limited set of

279 machines on which the jobs must be executed or a set

280 of precedence constraints restricting the job order

281 (see Applegate and Cook (1991)). The literature on

282 scheduling problems is extremely rich and many

283 variants of the basic problem have been suggested

284(Pinedo 2008). Location problems involve choosing

285the optimal set of locations from a set of candidates,

286perhaps represented as the nodes of a graph, subject to

287certain requirements, such as the satisfaction of given

288customer demands or the provision of emergency

289services to dispersed populations (Drezner and

290Hamacher 2004). Location, routing, and scheduling

291problems all arise in the design of logistics systems,

292i.e., systems linking production facilities to end-user

293demand points through the use of warehouses,

294transportation facilities, and retail outlets. Thus, it is

295easy to envision combinations of these classes of

296problems into even more complex combinatorial

297problems and much work has been in this direction.

298Packing, Partitioning, and Covering Problems

299Many practical optimization problems involve

300choosing a set of activities that must either cover

301certain requirements or must be packed together so as

302to not exceed certain limits on the number of activities

303selected. The airline crew scheduling problem, e.g., is

304a covering problem in which one must choose a set of

305pairings (a set of flight legs that can be flown

306consecutively by a single crew) that cover all

307required routes (Hoffman and Padberg 1993; Vance

308et al. 1997). Alternatively, an example of a set packing

309problem is a combinatorial auction (Cramton et al.

3102006). The problem is to select subsets of a given set

311of items that are up for auction in such a way that each

312item is included in at most one subset. This is the

313problem faced by an auctioneer in an auction in

314which bidders can bid on sets of items rather than just

315single items. If one requires that all items be sold, then

316the auctioneer’s problem becomes a partitioning

317problem. There are a variety of languages that allow

318users to express the interrelationship among their bids.

319Such languages (e.g., “OR,” “XOR,” “ORofXOR,”

320“XORofOR”) create a somewhat different structure

321to the combinatorial problem.

322In the above examples, the coefficients in

323constraints (2) are either zero or one and all variables

324are binary. The variables represent the choice of

325activities, while each constraint represents either

326a covering (“�”), packing (“�”), or partitioning

327(“¼”) requirement. In many cases, these problems

328can be easily interpreted by thinking of the rows as

329a set of items to be allocated or a set of activities to

330be undertaken and the columns as subset of those

331items/activities. The optimization problem is then to

I 4 Integer and Combinatorial Optimization
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332 find the best collection of subsets of the activities/items

333 (columns) in order to cover/partition/pack the row set.

334 Surveys on set partitioning, covering, and packing are

335 given in Balas and Padberg (1976), Borndörfer and

336 Weismantel (2000), Hoffman and Padberg (1993),

337 and Padberg (1979b).

338 Other Nonconvex Problems

339 The versatility of the integer optimization model

340 (1)–(6) might best be exemplified by the fact that

341 many nonlinear/nonconvex optimization problems

342 can be reformulated as MILPs. For example, one

343 reformulation technique for representing nonlinear

344 functions is to find a piecewise linear approximation

345 and to represent the function by adding a binary

346 variable corresponding to each piece of the

347 approximation. The simplest example of such

348 a transformation is the fixed-charge problem in which

349 the cost function has both a fixed charge for initiating

350 a given activity, as well as marginal costs associated

351 with continued operation. One example of a

352 fixed-charge problem is the facility location problem

353 in which one wishes to locate facilities in such a way

354 that the combined cost of building the facility

355 (a onetime fixed cost) and producing and shipping to

356 customers (marginal costs based on the amount

357 shipped and produced) is minimized (see Drezner and

358 Hamacher (2004)). The fact that nothing can be

359 produced in the facility unless the facility exists

360 creates a discontinuity in the cost function. This

361 function can be transformed to a linear function by

362 the introduction of additional variables that take on

363 only the values 0 or 1. Similar transformations allow

364 one to model separable nonlinear functions as integer

365 (linear) optimization problems.

366 Solution Methods

367 Solving integer optimization problems (finding an

368 optimal solution), can be a difficult task. The

369 difficulty arises from the fact that unlike (continuous)

370 linear optimization problems, for which the feasible

371 region is convex, the feasible regions of integer

372 optimization problems consists of either a discrete set

373 of points or, in the case of general MILP, a set of

374 disjoint polyhedra. In solving a linear optimization

375 problem, one can exploit the fact that, due to the

376 convexity of the feasible region, any locally optimal

377solution is a global optimum. In finding global optima

378for integer optimization problems, on the other hand,

379one is required to prove that a particular solution

380dominates all others by arguments other than the

381calculus-based approaches of convex optimization.

382The situation is further complicated by the fact that

383the description of the feasible region is implicit. In

384other words, the formulation (1)–(6) does not provide

385a computationally useful geometric description of the

386set S. A more useful description can be obtained in one

387of two ways described next.

388The first approach is to apply the powerful

389machinery of polyhedral theory. Weyl (1935)

390established the fact that a polyhedron can either be

391defined as the intersection of finitely many

392half-spaces, i.e., as a set of points satisfying

393inequalities of the form (2) and (3), or as the convex

394hull of a finite set of extreme points plus the conical

395hull of a finite set of extreme rays. If the data

396describing the original problem formulation are

397rational numbers, then Weyl’s theorem implies the

398existence of a finite system of linear inequalities

399describing the convex hull of S, denoted by conv(S)
400(Nemhauser and Wolsey 1988). Optimization of

401a linear function over conv(S) is precisely equivalent

402to optimization over S, but optimizing over conv(S) is
403a convex optimization problem. Thus, if it were

404possible to enumerate the set of inequalities in

405Weyl’s description, one could solve the integer

406optimization problem using methods for convex

407optimization, in principle. The difficulty with this

408method, however, is that the number of linear

409inequalities required is too large to construct

410explicitly, so this does not lead directly to a practical

411method of solution.

412A second approach is to describe the feasible set

413in terms of logical disjunction. For example, if j ∈ B,

414then either xj ¼ 0 or xj ¼ 1. This means that, in

415principle, the set S can be described by replacing

416constraints (4)–(5) with a set of appropriately chosen

417disjunctions. In fact, it is known that any MILP can be

418described as a set of linear inequalities of the form (2)

419and (3), plus a finite set of logical disjunctions (Balas

4201998). Similarly, however, the number of such

421disjunctions would be too large to enumerate

422explicitly and so this does not lead directly to a

423practical method of solution either.

424Although neither of the above methods for

425obtaining a more useful description of S leads

Integer and Combinatorial Optimization 5 I
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426 directly to an efficient methodology because they both

427 produce descriptions of impractical size, most solution

428 techniques are nonetheless based on generating partial

429 descriptions of S in one of the above forms (or

430 a combination of both). The general outline of such

431 a method is as follows:

432 1. Identify a (tractable) convex relaxation of the

433 problem and solve it to either

434 • Obtain a valid upper bound on the optimal

435 solution value; or

436 • Prove that the relaxation is infeasible or

437 unbounded (and thus, the original MILP is also

438 infeasible or unbounded)

439 2. If solving the relaxation produces a solution x̂ 2 N

440 that is feasible to the MILP, then this solution must

441 also be optimal to the MILP.

442 3. Otherwise, either

443 • Identify a logical disjunction satisfied by all

444 members of S, but not by x̂ and add it to the

445 description of P (more on how this is done

446 below); or

447 • Identify an implied linear constraint (called

448 a valid inequality or a cutting plane) satisfied

449 by all members of S, but not by x̂ and add it to

450 the description of P
451 In Step 1, the LP relaxation obtained by dropping

452 the integrality conditions on the variables and

453 optimizing over P is commonly used. Other possible

454 relaxations include Lagrangian relaxations

455 (Fisher 1981; Geoffrion 1974), semi-definite

456 programming relaxations (Rendl 2010), and

457 combinatorial relaxations, e.g., the one-tree

458 relaxation for the traveling salesman problem Held

459 and Karp (1970). This discussion initially considers

460 use of the LP relaxation, since this is the simplest one

461 and the one used in state-of-the-art software.

462 Additional relaxations are considered in more detail

463 in section “Advanced Procedures.”

464 By recursively applying the basic strategy outlined

465 above, a wide variety of convergent methods that

466 generate partial descriptions of S can be obtained.

467 These methods can be broadly classified as either

468 implicit enumeration methods (employing the use of

469 logical disjunction in Step 3) or cutting plane methods

470 (based on the generation of valid inequalities in Step

471 3), though these are frequently combined into hybrid

472 solution procedures in computational practice. In the

473 next two sections, more details about these two classes

474 of methods are given.

475Enumerative Algorithms

476The simplest approach to solving a pure integer

477optimization problem is to enumerate all finitely

478many possibilities (as long as the problem is

479bounded). However, due to the combinatorial

480explosion resulting from the fact that the size of the

481set S is generally exponential in the number of

482variables, only the smallest instances can be solved

483by such an approach. A more efficient approach is to

484only implicitly enumerate the possibilities by

485eliminating large classes of solutions using

486domination or feasibility arguments. Besides

487straightforward or implicit enumeration, the most

488commonly used enumerative approach is called

489branch and bound.

490The branch-and-bound method was first proposed

491by Land and Doig (1960) and consists of generating

492disjunctions satisfied by points in S and using

493them to partition the feasible region into smaller

494subsets. Some variant of the technique is used by

495practically all state-of-the-art solvers. An LP-based

496branch-and-bound method consists of solving the LP

497relaxation as in Step 1 above to either obtain a solution

498and an associated upper bound or to prove infeasibility

499or unboundedness. If the generated solution x̂ 2 N to

500the relaxation is infeasible to the original MILP, then

501x̂j =2  for some j∈B[ I. However, xj 2  for all x∈S.
502Therefore, the logical disjunction

xj � x̂j
� �

OR xj � x̂j
� �

(7)

503is satisfied by all x ∈ S, but not by x̂. In this case, one

504can impose the disjunction implicitly by branching,

505i.e., creating two subproblems, one associated with

506each of the terms of the disjunction (7).

507The branch-and-bound method consists of applying

508this same method to each of the resulting subproblems

509recursively. Note that the optimal solution to

510a subproblem may or may not be the global optimal

511solution. Each time a new solution is found, it is

512checked to determine whether it is the best seen so

513far and if so, it is recorded and becomes the current

514incumbent. The true power of this method comes from

515the fact that if the upper bound obtained by solving the

516LP relaxation is smaller than the value of the current

517incumbent, the node can be discarded. Mitten (1970)

518provided the first description of a general algorithmic

519framework for branch and bound. Hoffman and

I 6 Integer and Combinatorial Optimization



Comp. by: DMuthuKumar Stage: Galleys Chapter No.: 129 Title Name: EORMS
Date:9/6/12 Time:12:12:25 Page Number: 7

520 Padberg (1985) provided an overview of LP-based

521 branch-and-bound techniques. Linderoth and

522 Savelsbergh (1999) reported on a computational

523 study of search strategies used within branch and

524 bound.

525 Cutting Plane Algorithms

526 Gomory (1958, 1960) was the first to derive a cutting

527 plane algorithm following the basic outline above for

528 integer optimization problems. His algorithm can be

529 viewed, in some sense, as a constructive proof of

530 Weyl’s theorem. Although Gomory’s algorithm

531 converges to an optimal solution in a finite number of

532 steps (in the case of pure integer optimization

533 problems), the convergence to an optimum may

534 be extraordinarily slow due to the fact that

535 these algebraically derived valid inequalities are

536 weak—they may not even support conv(S) and are

537 hence dominated by stronger (but undiscovered) valid

538 inequalities. Since the smallest possible description of

539 conv(S) is desired, one would like to generate only the
540 strongest valid inequalities, i.e., those that are part of

541 some minimal description of conv(S). Such

542 inequalities are called facets. In general, knowing all

543 facets of conv(S) is enough to solve the MILP (though

544 this set would still be very large in most cases).

545 A general cutting plane approach relaxes the

546 integrality restrictions on the variables and solves the

547 resulting LP relaxation over the set P. If the LP is

548 unbounded or infeasible, so is the MILP. If the

549 solution to the LP is integer, i.e., satisfies constraints

550 (4) and (5), then one has solved the MILP. If not, then

551 one solves a separation problem whose objective is to

552 find a valid inequality that cuts off the fractional

553 solution to the LP relaxation while assuring that all

554 feasible integer points satisfy the inequality—i.e., an

555 inequality that separates the fractional point from the

556 polyhedron conv(S). Such an inequality is called a cut
557 for short. The algorithm continues until termination in

558 one of two ways: either an integer solution is found

559 (the problem has been solved successfully) or the LP

560 relaxation is infeasible and therefore the integer

561 problem is infeasible.

562 For ILPs, there are versions of Gomory’s method

563 that yield cutting plane algorithms that will produce

564 a solution in a finite number of iterations, at least with

565 the use of exact rational arithmetic. In practice,

566 however, the algorithm could terminate in a third

567 way—it may not be possible to identify a new cut

568even though the optimal solution has not been found

569either due to numerical difficulties arising from

570accumulated round-off error or because procedures

571used to generate the cuts are unable to guarantee

572the generation of a violated inequality, even when

573one exists. If one terminates the cutting plane

574procedure because of this third possibility, then, in

575general, the process has still improved the original

576formulation and the bound resulting from solving the

577LP relaxation is closer to the optimal value. By then

578switching to an implicit enumeration strategy, one may

579still be able to solve the problem. This hybrid strategy,

580known as branch and cut, is discussed in the next

581section.

582Advanced Procedures

583Branch and Cut

584The two basic methods described above can be

585hybridized into a single algorithm that combines the

586power of the polyhedral and disjunctive approaches.

587This method is called branch and cut. A rather sizable

588literature has sprung up around these methods. Papers

589describing the basic framework include those of

590Hoffman and Padberg (1991) and Padberg and

591Rinaldi (1991). Surveys of the computational issues

592and components of a modern branch-and-cut solver

593include Atamt€urk and Savelsbergh (2005), Linderoth

594and Ralphs (2005), and Martin (2001). The major

595components of the algorithm consist of automatic

596reformulation and preprocessing procedures (see next

597section), heuristics that provide good feasible integer

598solutions, procedures for generating valid inequalities,

599and procedures for branching. All of these are

600embedded into a disjunctive search framework, as in

601the branch-and-bound approach. These components

602are combined so as to guarantee optimality of the

603solution obtained at the end of the calculation. The

604algorithm may also be stopped early to produce a

605feasible solution along with a bound on the relative

606distance of the current solution from optimality. This

607hybrid approach has evolved to be an extremely

608effective way of solving general MILPs. It is the basic

609approach taken by all state-of-the-art solvers for MILP.

610Ideally, the cutting planes generated during the

611course of the algorithm would be facets of conv(S).
612In the early years of integer optimization, considerable

613research activity was focused on identifying part
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614 (or all) of the list of facets for specific combinatorial

615 optimization problems by exploiting the special

616 structure of conv(S) (Balas and Padberg 1972; Balas

617 1975; Bauer et al. 2002; Hammer et al. 1975;

618 Nemhauser and Sigismondi 1992; Nemhauser and

619 Trotter 1974; Nemhauser and Vance 1994; Padberg

620 1973, 1974, 1979a; Pochet and Wolsey 1991;

621 Wolsey 1975, 1976). This led to a wide variety of

622 problem-dependent algorithms that are nevertheless

623 based on the underlying principle embodied in

624 Weyl’s theorem. An extensive survey of the use of

625 these techniques in combinatorial optimization is

626 given by Aardal and van Hoesel (1996a, b).

627 Research on integer optimization is increasingly

628 focused on methods for generating inequalities based

629 purely on the disjunctive structure of the problem and

630 not on properties of a particular class of problems. Part

631 of the reason for this is the need to be able to solve

632 more general MILPs for which even the dimension of

633 conv(S) is not known. With this approach, it is not

634 possible to guarantee the generation of facets in every

635 iteration, but theoretical advances have resulted in vast

636 improvements in the ability to solve general

637 unstructured integer optimization problems using

638 off-the-shelf software. A survey of cutting plane

639 methods for general MILPs is provided by

640 (Cornuéjols 2008). Other papers on techniques for

641 generating valid inequalities for general MILPs

642 include Balas et al. (1993, 1996, 1999), Gu et al.

643 (1998, 1999, 2000), Nemhauser and Wolsey (1990),

644 Marchand and Wolsey (2001), and Wolsey (1990).

645 Equally as important as cutting plane generation

646 techniques are branching schemes, though these

647 methods have received far less attention in the

648 literature. Branching methods are generally based on

649 some method of estimating the impact of a given

650 branching disjunction and trying to choose the best

651 one according to certain criteria. Papers discussing

652 branching methods include Achterberg et al. (2005),

653 Fischetti and Lodi (2002), Karamanov and Cornuéjols

654 (2009), and Owen and Mehrotra (2001).

655 There has been a surge in research on the use of

656 heuristic methods within the branch-cut-cut

657 framework in order to generate good solutions and

658 improve bounds as the search progresses. Many

659 search methods are based on limited versions of the

660 same search procedures used to find globally optimal

661 solutions. The development of such methods has led to

662marked improvements in the performance of exact

663algorithms (Balas and Martin 1980; Balas et al. 2004;

664Fischetti and Lodi 2002; Nediak and Eckstein 2001).

665In current state-of-the-art software, multiple heuristics

666are used because they are likely to produce feasible

667solutions more quickly than tree search, which helps

668both to eliminate unproductive subtrees and to

669calculate improved variable bounds that result in

670a tighter description of the problem. These heuristics

671include techniques for searching within the local

672neighborhood of a given linear feasible solutions for

673integer solutions using various forms of local search.

674Achtenberg and Berthold (2007), Danna et al. (2005),

675Fischetti et al. (2009), and Rothberg (2007) provide

676descriptions of heuristics built into current packages.

677Automatic Reformulation

678Before solving an integer optimization problem, the

679first step is that of formulation, in which a conceptual

680model is translated into the form (1)–(6). There are

681often different ways of mathematically representing

682the same problem, both because different systems of

683the form (1)–(6) may define precisely the same set

684S and because it may be possible to represent the

685same conceptual problem using different sets of

686variables. There are a number of different ways in

687which the conceptual model can be translated into

688a mathematical model, but the most common is to use

689an algebraic modeling language, such as AIMMS,

690AMPL (Fourer et al. 1993), GAMS (Brooke et al.

6911988), MPL, or OPL Studio.

692The time required to obtain an optimal solution to

693a large integer optimization problem usually depends

694strongly on the way it is formulated, so much research

695has been directed toward the effective automatic

696reformulation techniques. Unlike linear optimization

697problems, the number of variables and constraints

698representing an integer optimization problem may not

699be indicative of its difficulty. In this regard, it is

700sometimes advantageous to use a model with a larger

701number of integer variables, a larger number of

702constraints, or even both. Discussions of alternative

703formulation approaches are given in Guignard and

704Spielberg (1981) and Williams (1985), and a

705description of approaches to automatic reformulation

706or preprocessing is given in Anderson and Anderson

707(1995), Atamturk and Savelsbergh (2000), Brearley
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708 et al. (1975), Hoffman and Padberg (1991), Roy and

709 Wolsey (1987), and Savelsbergh (1994).

710 A variety of difficult problems have been solved

711 by reformulating them as either set-covering or

712 set-partitioning problems having an extraordinary

713 number of variables. Because for even small

714 instances, such reformulations may be too large to

715 solve directly, a technique known as column

716 generation, which began with the seminal work of

717 Gilmore and Gomory (1961) on the cutting stock

718 problem, is employed. An overview of such

719 transformation methods can be found in Barnhart

720 et al. (1998). For specific implementations, for the

721 vehicle routing problem, see Chabrier (2006), for the

722 bandwidth packing problem, see Hoffman and Villa

723 (2007) and Parker and Ryan (1995), for the generalized

724 assignment problem, see Savelsbergh (1997), and for

725 alternative column-generation strategies for solving

726 the cutting stock problem see Vance et al. (1994).

727 Bramel and Simchi-Levi (1997) have shown that the

728 set-partitioning formulation for the vehicle routing

729 problem with time windows is very effective in

730 practice—that is, the relative gap between the

731 fractional linear optimization solutions and the global

732 integer solution is small. Similar results have been

733 obtained for the bin-packing problem (Chan et al.

734 1998a) and for the machine-scheduling problem

735 (Chan et al. 1998b).

736 Decomposition Methods

737 Relaxing the integrality restriction is not the only

738 approach to relaxing the problem. An alternative

739 approach to the solution to integer optimization

740 problems is to relax a set of complicating constraints

741 in order to obtain a more tractable model. This

742 technique is effective when the problem to be solved

743 is obtained by taking a well-solved base problem and

744 adding constraints specific to a particular application.

745 By capitalizing on the ability to solve the base

746 problem, one can obtain bounds that are improved

747 over those obtained by solving the LP relaxation.

748 These bounding methods can then be used to drive

749 a branch-and-bound algorithm, as described earlier.

750 Such bounding methods are called constraint

751 decomposition methods or simply decomposition

752 methods, since they involve decomposing the set of

753 constraints. By removing the complicating constraints

754 from the constraint set, the resulting subproblem is

755frequently considerably easier to solve. The latter is

756a necessity for the approach to work because the

757subproblems must be solved repeatedly. The bound

758found by decomposition can be tighter than that

759found by linear optimization, but only at the expense

760of solving subproblems that are themselves integer

761optimization problems. Decomposition requires that

762one understand the structure of the problem being

763solved in order to then relax the constraints that are

764complicating.

765The bound resulting from a particular

766decomposition can be computed using two

767different computational techniques—Dantzig-Wolfe

768decomposition (Dantzig and Wolfe 1960;

769Vanderbeck 2000) (column generation) and

770Lagrangian relaxation (Fisher 1981; Geoffrion 1974;

771Held and Karp 1970). In the former case, solutions to

772the base problem are generated dynamically and

773combined in an attempt to obtain a solution satisfying

774the complicating constraints. In the latter case, the

775complicating constraints are enforced implicitly by

776penalizing their violation in the objective function.

777Overviews of the theory and methodology behind

778decomposition methods and how they are used in

779integer programming can be found in Ralphs and

780Galati (2005) and Vanderbeck and Wolsey (2010).

781A related approach is that of Lagrangian

782decomposition (Guignard and Kim 1987), which

783consists of isolating sets of constraints so as to obtain

784multiple, separate, easy-to-solve subproblems. The

785dimension of the problem is increased by creating

786copies of variables that link the subsets and adding

787constraints that require these copies to have the same

788value as the original in any feasible solution. When

789these constraints are relaxed in a Lagrangian fashion,

790the problem decomposes into blocks that can be treated

791separately.

792Most decomposition-based strategies involve

793decomposition of constraints, but there are cases in

794which it may make sense to decompose the variables.

795These techniques work well in the case when fixing

796some subset of the variables (the complicating

797variables) to specific values reduces the problem to

798one that is easy to solve. Benders’ decomposition

799algorithm projects the problem into the space of

800these complicating variables and treats the

801remaining variables implicitly by adding so-called

802Benders cuts violated by solutions that do not have
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803 a feasible completion and adding a term to the

804 objective function representing the cost of

805 completion for any given set of value of the

806 complicating variables (Benders 1962). For a survey

807 on Benders cuts, see Hooker (2002).

808 Related Topics

809 There are a number of topics related to combinatorial

810 and integer optimization that have not been covered

811 here. One such topic is the complexity of integer

812 optimization problems (Garey and Johnson 1979), an

813 area of theoretical study that has increased our

814 understanding of the implicit difficulty of integer

815 optimization dramatically. Another important topic is

816 that of heuristic solution approaches—that is,

817 techniques for obtaining good but not necessarily

818 optimal solutions to integer optimization problems

819 quickly. In general, heuristics do not provide any

820 guarantee as to the quality of the solutions they

821 produce, but are very important in practice for

822 a variety of reasons. Primarily, they may provide the

823 only usable solution to very difficult optimization

824 problems for which the current exact algorithms fail

825 to produce one. Research into heuristic algorithms has

826 applied techniques from the physical sciences to the

827 approximate solution of combinatorial problems. For

828 surveys of research in simulated annealing (based on

829 the physical properties of heat), genetic algorithms

830 (based on properties of natural mutation), and neural

831 networks (models of brain function) see Hansen

832 (1986), Goldberg (1989), and Zhang (2010),

833 respectively. Glover and Laguna (1998) have

834 generalized some of the attributes of these methods

835 into a method called tabu search. Worst-case and

836 probabilistic analysis of heuristics are discussed in

837 Cornuejols et al. (1980), Karp (1976), and Kan (1986).

838 Another developing trend is the use of approaches

839 from other disciplines in which optimization problems

840 also arise. In some cases, multiple approaches can be

841 used to handle difficult optimization problems by

842 merging alternative strategies into a single algorithm

843 (the so-called algorithm portfolio approach). As an

844 example, constraint-logic programming was

845 developed by computer scientists in order to work on

846 problems of finding feasible solutions to a set of

847 constraints. During the last decade, many of the

848 advances of constraint-logic programming have been

849embedded into mathematical programming algorithms

850in order to handle some of the difficult challenges of

851combinatorial optimization such as those related to

852scheduling where there is often significant symmetry.

853For example, see Hooker (2007) and Rasmussen and

854Trick (2007) for some applications that use both

855Benders decomposition and constraint programming

856to handle difficult scheduling problems. For research

857that relates issues in computational logic to those

858associated with combinatorial optimization see

859McAloon and Tretkoff (1996).

860See

861▶Air Traffic Management

862▶Airline Industry Operations Research

863▶Assignment Problem

864▶Bender’s Decomposition

865▶Bin Packing

866▶Branch and Bound

867▶Capital Budgeting

868▶Chinese Postman Problem

869▶Combinatorial Auctions

870▶Combinatorial Explosion

871▶Combinatorics

872▶ Facility Location

873▶ Fathom

874▶Global Optimum

875▶Heuristics

876▶Lagrangian Function

877▶Linear Programming

878▶Local Optimum

879▶Networks

880▶ Packing Problem

881▶Relaxed Problem

882▶ Set-Covering Problem

883▶ Set-Partitioning Problem

884▶Tabu Search

885▶Traveling Salesman Problem
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