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7 Introduction

8 The advent of the Internet has led to the creation of

9 global marketplaces in which sales of everything from

10 low-cost used merchandise to billion dollar

11 government procurements are conducted through

12 auctions. This article concentrates on designs where

13 many items are auctioned simultaneously and where

14 bidders have the flexibility to combine the goods into

15 packages. The discussion (1) highlights alternative

16 combinatorial auction designs and provides the

17 reader with multiple references to resources that

18 describe more fully the underlying theory of these

19 designs., and (2) describes the mechanisms used to

20 evaluate the efficacy of such approaches in terms of

21 their efficiency, equity, and cognitive complexity, and

22 presents some examples of the use of combinatorial

23 auctions for high-value government lease rights, as

24 well as the use of such auctions for supply-chain

25 procurement. These auctions require knowledge of

26 both game theory and combinatorial optimization.

27 General Concepts

28 Governments throughout the world use auctions to

29 lease the right to explore and extract minerals, fuel,

30and lumber on government properties, to use the

31airwaves for mobile or broadcast communications, or

32to control emissions through cap and trade regulations.

33In addition, the use of business-to-business auctions

34(often called supply chain auctions) has become

35a billion-dollar industry. In each of these cases, the

36need to be able to bundle buys and sells has resulted

37in new auction theory and designs that enable the

38simultaneous selling or buying of items using

39mechanisms that allow participants to indicate their

40value for the entire package which may have

41a greater value than the sum of the items within that

42package. In addition, such auction designs allow users

43to specify quantity discounts, to indicate budget

44constraints on the total procurement, and to define

45other goals of the auction, e.g. social welfare goals in

46a government auction. These auction designs are

47computationally more complex for all participants

48and require languages that allow bidders to express

49their willingness to participate at a given price for

50a collection of objects. Such auctions have been

51termed combinatorial auctions. There are many books

52that describe the history of auctions, auction theory and

53its relationship to game theory, and others that are

54focused exclusively on combinatorial auction

55designs. For further reading on the subject, see:

56McMillan (2002) on the history of markets, Krishna

57(2002) on auction theory, Steiglitz (2007) on the

58success and pitfalls of EBAY auctions, Au1Klemperer

59(2008) on auction theory and practice, and Milgrom

60(2004) and Cramton et al. (2005) on combinatorial

61auctions. In this review, only the major topics of the

62field are described, but multiple references are

63provided for further reading.
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64 In what follows, one-sided auctions are considered

65 and are restricted to the case where there is a single

66 seller and multiple buyers (two-sided auctions are

67 often referred to as exchanges, see Milgrom (2007),

68 Parkes et al. (2001), and Hoffman and Menon (2010)

69 on exchange designs). Since the multiple-sellers/

70 single-buyer case and the multiple-buyers/

71 single-seller case are symmetric, the discussion

72 emphasizes the latter, but all results follow for either

73 case. The concentration is on auction designs where

74 that there are multiple items being sold. For at least

75 some of the buyers, a collection of items must be

76 procured to have a viable business plan;

77 consideration is given only to auction designs that

78 allow the packaging of collections of items. Such

79 designs can provide greater efficiency, as well as

80 greater revenue to the seller than the sequential

81 selling of items individually. These designs are

82 sufficiently general to allow bidders to express

83 a value on a package where the collection of items

84 may have a value greater than the individual items

85 (i.e. the goods are complements), as well as on

86 a package where a buyer can express a quantity

87 discount for buying more of the good (i.e. the goods

88 are substitutes).

89 Why are auctions such a popular mechanism for

90 buying and selling valuable objects? With the advent

91 of the Internet, auctions are capable of reaching many

92 more possible participants. Here, the potential buyers

93 wish to determine the minimum price that they must

94 pay given that they must compete with others for the

95 ownership of a good or collection of goods. From the

96 seller’s perspective, submitting goods to an auction

97 may increase the number of buyers, thereby

98 increasing the potential for competitive bidding and

99 higher selling prices. Thus, an auction is a mechanism

100 to determine the market-based price, since the bidders

101 set the price through the competition among the bids.

102 This mechanism is dynamic and reacts to changes in

103 market conditions. The determination of selling prices

104 by an auction is perceived as fairer than if the price

105 were set by bilateral negotiations because all buyers

106 must adhere to the same set of rules. Most importantly,

107 if the rules are well designed, the result will have the

108 goods allocated to the entity that values them the most.

109 The two basic classes of auctions are described

110 next: (1) sealed bid auctions whereby there is only

111 a single opportunity to provide bids to the auction,

112 and (2) multi-round auctions where bids are taken

113over a period of time and any high bid can be

114overtaken whenever a new bid is received that

115increases the overall revenue to the seller.

116Sealed Bid Auctions

117One common auction mechanism is the first-price

118(sealed bid) auction. In this design, all bidders submit

119their bids by a specified date. The bids are examined

120simultaneously and the auctioneer determines the set

121of bidders that maximizes the revenue to the seller. The

122optimization problem that determines a collection of

123package bids that do not often overlap and produce the

124maximum revenue is known as the Winner

125Determination Problem (WDP). Mathematically, the

126problem can be stated as follows:

WDPOR : Max
X#Bids

b¼1

BidAmountbxb

subject to :

Ax � 1

(1)

x 2 f0; 1g (2)

127where xb is a zero–one variable which indicates

128whether bid b loses or wins, respectively. A is an n
129x m matrix with m rows, one for each item being

130auctioned. Each of the n columns represents a bid

131where there is a one in a given row if the item is

132included in the bid and zero otherwise. Constraint set

133(1) specifies that each item can be assigned at most

134once. Set (1) constraints are equations when the seller

135chooses to put a minimum price on each item and is

136unwilling to sell any item below that price. In this case,

137there is a set of m bids each with only a single item in

138the package and a bid price at a price slightly below the

139minimum opening bid price. In this way, the seller will

140keep the item rather than allow it to be won by a bidder

141at less than the opening bid price.

142In this formulation of the WDP, the bidder can win

143any combination of bids, as long as each item is

144awarded only once; this is referred to as the “OR”

145language. The problem with this language is that it

146creates a type of exposure problem, that of winning

147more than the bidder can afford. When multiple bids of

148a single bidder can be winning, it is incumbent on the

149software to highlight the maximum exposure to the

C 2 Combinatorial Auctions
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150 bidder. This calculation requires that a combinatorial

151 optimization problem be solved for each bidder that

152 calculates the dollar exposure, creating new

153 computational issues for the auctioneer and may

154 result in packages that are not best for the bidder.

155 The most natural alternative to this “OR” language

156 is the “XOR” language. In this case, the user supplies

157 every possible combination of bids of interest along

158 with a maximum bid price that she is willing to pay for

159 that package. This language removes the dollar

160 exposure problem, since the maximum number of

161 bids that a bidder can possibly pay is the highest bid

162 amount of any of its bids. The problem with the XOR

163 language is that it places a new burden on the bidder:

164 the bidder is forced to enumerate all possible

165 combinations of packages of interest and their

166 associated values. Clearly, as the number of items in

167 an auction increase, the number of possible bids goes

168 up exponentially. When the XOR bidding language is

169 used the Winner Determination Problem (WDPXOR)

170 becomes:

WDPxor : Max
X#Bids

b¼1

BidAmountbxb

subject to :

x ¼ 1

(3)

X

b2SB
xb � 1 for each bidder B (4)

xb 2 f0; 1g (5)

171 Where SB is the set of bids of bidder B, and

172 constraint set (4) specifies that at most one of these

173 bids can be in the winning set.

174 Fujishima et al. (1999) proposed a generalization of

175 the OR language that does not require the enumeration

176 of all possible combinations. They label this language

177 OR*. Here, each bidder is supplied dummy items

178 (these items have no intrinsic value to any of the

179 participants). When a bidder places the same dummy

180 item into multiple packages, it tells the auctioneer that

181 the bidder wishes to win at most one of these

182 collections of packages. This language is fully

183 expressive, as long as bidders are supplied sufficient

184 dummy items. This language is also relatively simple

185 for bidders to understand and use, as was shown in

186 a Sears Corporation supply-chain transportation

187auction. In that auction, all bids were treated as “OR”

188bids by the system. Some bidders cleverly chose

189a relatively cheap item to place in multiple bids

190thereby making these bids mutually exclusive,

191Ledyard et al. (2002). There have been a number of

192alternative bidding languages that have been proposed;

193see Fujishima et al. (1999), Nisan (2000), Boutilier and

194Hoos (2001), and Boutelier et al. (2002) for

195descriptions of alternative languages.

196One serious flaw in a first-price sealed-bid design is

197that the bidder can experience what is referred to as the

198winner’s curse, i.e., the winning bidder may pay more

199than was necessary to win since the second highest bid

200price was far less than the winning bid amount. For this

201reason, sealed-bid first price auctions encourage

202bidders to shave some amount off of the bid price.

203From a game-theoretic perspective, one wants an

204auction design that encourages straight-forward

205honest bidding.

206An alternative that overcomes this problem is the

207second price (sealed bid) auction whereby the bidder

208that has submitted the highest bid is awarded the object

209(package), but the bidder pays only slightly more (or

210the same amount) as that bid by the second-highest

211bidder. In second price auctions with statistically

212independent private valuations, each bidder has

213a dominant strategy to bid exactly his valuation. The

214second price auction also is often called a Vickrey

215auction (1961).

216In a second-price auction, one solves the same

217winner determination problem as one does for the

218first-price sealed-bid case, but the winners do not

219necessarily pay what they bid. Instead, one

220determines the marginal value to the seller of having

221this bidder participate in the auction. To do this, for

222each winning bidder, one calculates the revenue that

223the seller would receive when that bidder participates

224in the auction and when that bidder does not, i.e.

225when none of the bids of this bidder are in the

226winner determination problem. The difference in

227the two objective function values is known as the

228Vickrey-Clarke-Groves discount, named after the

229three authors, Vickrey (1961), Clarke (1971), and

230Groves (1973). Each of these authors wrote separate

231papers producing certain attributes that this auction

232design has as it relates to incentivizing bidders to

233reveal their truth value of the goods demanded, and

234the bidder pays the bid price minus the discount. When

Combinatorial Auctions 3 C
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235 winners pay this amount, the auction is known as the

236 Vickrey-Clarke-Groves (VCG) Mechanism.

237 Although it can be shown that the VCG mechanism

238 encourages truthful bidding, it is almost never used in

239 practice. For a complete list of reasons for it being

240 impractical, see Ausubel and Milgrom (2006) and

241 Rothkopf (2007). In essence, the prices provided by

242 this mechanism may be very low. Worse yet, when

243 items have complementary values, i.e. the package is

244 worth more to the bidder than the sum of the values of

245 the individual items, the outcome may price the items

246 so low that there is a coalition of bidders that would

247 prefer to renege on the auction and negotiate privately

248 with the seller, and the seller may respond by reneging

249 on the sale since both the seller and the coalition of

250 buyers will be better off. Ausubel and Milgrom (2002)

251 argue that prices should be set high enough so that no

252 such coalitions exist. In game theoretic terms, the

253 prices are set such that the outcome is in the core of

254 a coalitional game. These authors introduced an

255 auction design known as the ascending proxy auction

256 in which the bidders provide all bids as if in

257 a sealed-bid auction. Each bidder is provided with

258 a proxy that bids for the bidder in a straightforward

259 manner during an ascending auction. The proxy only

260 announces bids to the auctioneer that maximize the

261 bidder’s profit, (i.e. bid price minus announced price)

262 in any given round. The auction continues as an

263 ascending package-bidding auction until, in some

264 round, there are no new bids. Thus, the auction

265 simulates, through proxy bidders, an ascending

266 auction where the increment in each round is

267 infinitesimally small and each bidder, through the use

268 of its proxy, bids in a straight-forward manner. This

269 auction design is very similar to the iBundle design of

270 Parkes and Ungar (2000).

271 Hoffman et al. (2006) provide a computational

272 approach toward speeding up the calculations

273 associated with this proxy auction design, and Day

274 and Raghavan (2007) provide an elegant mechanism

275 to obtain minimal core prices directly. The direct

276 mechanism of Day and Raghavan sequentially solves

277 winner determination problems to determine losing

278 coalitions that could supply more revenue to the

279 seller at the current prices. When the solution to this

280 optimization problem yields revenue greater than what

281 the VCG mechanism would provide, the prices of the

282 winning bid set are raised so that the total price paid by

283 winning bidders is equal to this new revenue. To

284determine these new prices, one must be sure that any

285winning bidder that forms part of this blocking

286coalition does not have its price raised from its prior

287price since it would not be willing to join a coalition if

288it were to lose revenue relative to its prior offer by the

289seller. The algorithm is an iterative cutting plane

290algorithm that forces the prices higher at each

291iteration until one can find no coalition that can

292increase revenue to the seller. Therefore, the

293algorithm finds prices for each winning bidder that

294are in the core. Since there may be many such

295minimum core prices, Day and Milgrom (2008)

296suggest that, in order to encourage sincere bidding,

297one choose the minimum core prices that are closest

298in Euclidean distance from the VCG prices.

299Alternatively, Erdil et al. (2009) argue for a different

300set of minimum core prices that are based “on a class of

301‘reference rules’ in which bidders’ payments are,

302roughly speaking, determined independently of their

303own bids as far as possible.”

304These core-selecting second-price sealed-bid

305mechanisms have the following properties: They are

306in the core, they eliminate the exposure problem, and

307they encourage bidders to bid sincerely. As with all

308sealed-bid auctions, they make collusion and

309punishment for not adhering to tacit agreements

310extremely difficult.

311There are, however, negatives associated with this

312auction, as well as for all sealed-bid auction designs, in

313that it puts a significant burden on the bidders. Each

314bidder needs to assess, for every possible combination

315of items, whether it is a package of interest and then,

316for all such packages, determine the maximum it is

317willing to pay. In addition, such mechanisms do not

318provide any information about how the packages

319submitted might fit with packages submitted by other

320bidders. To overcome these problems, a number of

321authors have suggested simultaneous ascending

322combinatorial auction designs that allow users price

323information during the auction.

324Multi-round Auctions

325Often the value of the good or package of goods being

326auctioned is not completely known and/or private.

327Instead, there is a common component to the bid

328value, that is, the value of the item is not independent

329of the other bidders, but rather there is a common

C 4 Combinatorial Auctions
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330 underlying value as well. In such situations, each

331 agent has partial information about the value. Many

332 high-stakes auctions, such as government auctions for

333 spectrum, oil exploration, and land use, fall into this

334 class. In the case of package-bidding auctions, when

335 there is a common component and bidders want to

336 assess how much others are willing to pay for that

337 item or package of items, the auction is usually an

338 ascending auction with multiple rounds. A round

339 consists of a given time period where bidders have

340 the opportunity to submit new bids. When the round

341 ends, all bids are collected and the winner

342 determination problem is solved. This optimization

343 problem determines the packages that provide the

344 seller with the maximum revenue. The bids that are

345 in the winning set are labeled “provisionally winning,”

346 i.e. they would be winning if the auction ended in this

347 round. Thus, in an ascending combinatorial auction, all

348 items are sold simultaneously and a bidder can bid on

349 any collection of items in a given round. To overcome

350 the current set of provisionally winning bids, a bidder

351 must submit a bid that increases the total revenue to the

352 seller.

353 There are a number of design question that must be

354 answered to have a complete combinatorial auction

355 design:

356 1. How does the auction end?

357 2. Must bidders participate in every round?

358 3. Are bids from previous rounds part of the bids

359 considered by the winner determination problem?

360 4. How are the prices set in each round?

361 5. What do bidders know about the bids of other

362 bidders?

363 6. What other rules might be necessary to ensure that

364 collusion is avoided, to make reneging costly, and

365 to encourage bidders to act truthfully?

366 Of importance is how to assure that the auction ends

367 in a reasonable period of time and that price discovery

368 (the main reason for a multi-round auction) is

369 accomplished. Most package-bidding auctions have

370 discrete time periods, called rounds, and in each

371 round, the auctioneer provides a price to the user that

372 is the minimum price that the bidder must supply in

373 order to place a new bid. One can choose either a fixed

374 stopping rule or a stopping rule that is determined

375 dynamically. A fixed time stopping rule specifies that

376 the auction will end at a given time. With a fixed

377 stopping time, bidders are encouraged to not provide

378 any bids until the very last seconds of the auction,

379called sniping. The purpose of sniping is to give other

380bidders no chance of responding to an offer. In this

381way, a bidder can acquire price information from other

382bidders but does not reciprocate, since throughout

383most of the auction, the bidder is silent. If all bidders

384chose to snipe and provide no bids until the end of the

385auction, the auction essentially becomes a first-price

386sealed-bid auction. To overcome the problem of

387sniping and to encourage price discovery, most

388package bidding auctions use an alternative stopping

389criteria whereby the auction ends when no new bids are

390presented within a round.

391Often, for high-stakes multi-round auctions, there

392are also activity rules that require a bidder to bid in

393a consistent way throughout the auction. Activity rules

394force bidders to maintain a minimum level of bidding

395activity to preserve their eligibility to bid in the future.

396Thus, a bidder desiring a large quantity at the end of the

397auction (when prices are high) must bid for a large

398quantity early in the auction (when prices are low). If

399the bidder cannot afford to bid on a sufficient number

400of items to maintain current eligibility, then eligibility

401will be reduced so that it is consistent with current

402bidding. Once eligibility is decreased, it can never be

403increased. As the auction progresses, the activity

404requirement increases, reducing a bidder’s flexibility.

405The lower activity requirement early in the auction

406gives the bidder greater flexibility in shifting among

407packages early on when there is the most uncertainty

408about what will be obtainable. Precisely how the

409activity and eligibility rules are set matters and must

410be depend upon the type of auction – the value of the

411items being auctioned, the projected length of the

412auction, the number of participants, etc. In many

413high-stakes auctions, such as spectrum or electricity,

414these activity rules have proven highly successful,

415Klemperer (2002), McMillan (2002), and Milgrom

416(2004).

417In an ascending multi-round auction design, the

418auctioneer must provide information about the

419current value of each package. This information is

420used for two related purposes: (1) to specify the

421minimum bid for each item or package in the next

422round and (2) to provide valuation information to

423bidders so that they can determine what might be

424required for a bid to be winning in a subsequent

425round. While pricing information is easy to ascertain

426in single item auctions or in simultaneous multi-round

427auctions without package bidding, (i.e. where bids can

Combinatorial Auctions 5 C
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428 be placed on only single items), pricing information for

429 combinatorial auctions is not well defined. Bidders

430 provide only aggregate package prices without

431 providing the information about how each of the

432 individual components that made up the bundle

433 contributes to the overall price. Attempting to

434 disaggregate these bundles into single item prices

435 unambiguously is not possible. Also, since there are

436 many ways that some bundle might partner with other

437 packages to create a winning set, determining the

438 minimal cost partnering for a given package by

439 a given bidder is a complex problem.

440 To further complicate the pricing issue, bidders may

441 view certain items as substitutes and other items as

442 complements. In the case where items are substitutes,

443 bidders are likely to express sub-additive values for

444 their packages. That is, the value of a package of items

445 is less than or equal to the sum of the values of the

446 items that make up the package. In the complementary

447 case, bidders are likely to express super-additive

448 values for packages. In this case, the value of

449 a package of items is greater than or equal to the sum

450 of the values of the items that make up the package.

451 When items can be both substitutes and complements

452 for bidders, providing unambiguous, complete and

453 accurate price information is an unsolved problem.

454 The non-convex nature of the problem means that the

455 linear prices (i.e. the sum of a package is equal to the

456 sum of the individual items that make up the package)

457 that can be obtained from dual prices from the linear

458 relaxation of the WDP problem will overestimate the

459 true values of the items. In most auctions, one adjusts

460 the dual prices so that the prices are modified so that

461 when one sums the items in each of the winning

462 packages, the prices on those packages exactly equal

463 the prices bid by the provisionally winning bidders (i.e.

464 the winners at the end of the current round). Rassenti

465 et al. (1982) terms these prices pseudo-dual prices.

466 (For theoretical issues with duals associated with

467 non-convex problems see Wolsey(1981), and for

468 non-anonymous non-linear prices see deVries and

469 Vohra (2003) and Bikhchandani and Ostroy (2001).)

470 Although linear pricing cannot accommodate all

471 aspects of the pricing associated with the non-linear,

472 non-convex, winner determination problem, there are

473 still good reasons for considering its use for

474 determining future bid requirements. First, even

475 perfect pricing is only correct when all other aspects

476 of the problem remain fixed, i.e. when bid amounts

477remain the same on all other bids and when no new

478bids are submitted. Second, a dual price associated

479with a given constraint is only correct when one

480changes this single restriction (the right-hand-side of

481the associated constraint) by a very small amount. In

482the case of combinatorial auctions, the item is either

483won or it is not. Changes to a constraint would either

484remove the item entirely from consideration or create

485a second identical item. Thus, even non-linear,

486non-anonymous pricing has serious limitations in the

487context of the winner determination problem since

488the removal of a single item from the auction (e.g.

489the removal of the New York City market from

490consideration in a nationwide spectrum auction) may

491change the willingness of bidders to participate.

492Finally, in an ascending bid auction, bidders need

493pricing information that is easy to use and understand,

494and is perceived to be fair. In this situation, easy to use

495means that bidders can quickly compute the price of

496any package, whether or not it had been previously bid.

497Often, bidders want to know what it would take for

498such a bid to be competitive, i.e. have some possibility

499of winning in the next round. Bidders may also

500perceive such prices to be fair since all bidders must

501act on the same information. Linear prices are likely to

502move the auction along and deter such gaming

503strategies as parking (parking is an approach whereby

504the bidder bids on packages that currently have very

505low prices knowing that these packages have

506a very low probability of winning). Bidding on such

507low-priced packages allows a bidder to maintain

508eligibility (by maintaining activity), while hiding

509interest in the packages that are really desired until

510later in the auction). Thus, virtually all ascending

511combinatorial auctions use pseudo-dual pricing. For

512more on alternative pricing within this general

513framework and the testing thereof, see (Dunford et al.

514(2003), Bichler et al. (2009) and Brunner et al. (2011).

515In 1999, DeMartini et al. proposed an auction

516design labeled The Resource Allocation Design or

517RAD where the WDP is solved each round and all

518losing bidders can only bid on packages where the

519package price is the sum of the pseudo-dual prices

520plus some increment (as announced by the

521auctioneer). There is no activity rule for this auction

522design. In 2002, the Federal Communications

523Commission (FCC) announced a similar package

524bidding design but proposed refinements to the

525pseudo-price calculations that attempts to limit

C 6 Combinatorial Auctions
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526 fluctuations (both positive and negative) in prices.

527 A related design was proposed by Bichler et al.

528 (2009) and is called the Approximate Linear Pricing

529 Scheme (ALPS). It also uses similar rules but chooses

530 the ask price to better balance prices across items. Note

531 that all of these pricing procedures allow prices to both

532 increase and decrease depending upon the packages

533 that are in the winning set. In virtually all of these

534 designs, any bid submitted in any round is considered

535 active throughout the auction. This rule works well

536 with the XOR language since only one bid of

537 a bidder can be in an optimal set and bidders should

538 be willing to win bids placed in early rounds of the

539 auction, when prices were low. This rule forces bidders

540 to provide sincere bids throughout the auction.

541 A very different ascending package bidding design

542 was proposed by Porter et al. (2003). It is called the

543 combinatorial clock auction. In this design, the

544 auctioneer provides prices for each unique good

545 (if there are multiple identical items, then the bidder

546 indicates that number of units of that item they desire)

547 based solely on whether there is more demand for the

548 item than for supply; noWDP problem is solved. There

549 is no concept of a provisionally winning bidder.

550 Instead, prices increase whenever demand for a given

551 item is greater than supply. Bidders indicate the single

552 package bid that is best given the per-unit prices

553 announced by the auctioneer. All bidders must rebid

554 on any item that they wish to procure in each round.

555 The only information provided to bidders at the end of

556 each round is the quantity demanded for each item and

557 the price for the next round. As long as demand

558 exceeds supply for at least one item, the price is

559 increased for those items with excess demand. If

560 there are no new bids in a round and supply equals

561 demand, then the auction ends. However, it may

562 happen that when there are no new bids, demand has

563 been reduced to below supply. If this occurs, a WDP is

564 solved using all bids from all rounds. If the computed

565 prices do not displace any bids from the last round,

566 then the auction ends. Otherwise, the auction resumes

567 with the prices determined by using the pseudo-prices

568 calculated from the WDP. Thus, for most rounds, the

569 computation has been drastically reduced to merely

570 increasing prices by a given increment. Only, when

571 demand has dropped below supply is the WDP solved.

572 Other approaches are the auction designs that

573 simplify the problem by only allowing a few

574 pre-defined packages (Harstad et al. 1998) for which

575the WDP is polynomially solvable. This idea of only

576allowing a certain pre-determined set of packages

577(called hierarchical packages, Goeree and Holt 2010)

578was used in the 2009 FCC auction for broadband

579spectrum that brought over $19B into the U.S.

580Treasury. In that design, all bids were additive

581(the OR language applied) and the WDP was solved

582in linear time. When it is possible, in advance, to

583understand the needs of the bidders and when the

584packages most desired can be represented in

585a hierarchical fashion, then one obtains an auction

586design that is both simpler and quite efficient.

587However, if the demand for packages does not take

588on this hierarchical structure, then imposing such

589structure on the problem for the sake of

590computability will likely lead to less efficient

591outcomes.

592Hybrid Designs

593Ausubel et al. (2006) have argued for a hybrid design

594that reduces the computational burden on both the

595bidder and the auctioneer. Here, one first uses

596a combinatorial clock design followed by a last round

597second-price sealed-bid approach. The combinatorial

598clock is similar to that proposed by Porter et al. (2003)

599with the further enhancement that bidders who find the

600increment too high are able to place a bid at a price

601between the old price and the new price that indicates

602the maximum amount the bidder is willing to pay for

603that combination of items. In this way, the efficiency

604loss due to increment size is lessened. This phase of the

605auction ends when demand is less than or equal to

606supply or when demand on most items has trailed off.

607When demand does not exactly equal supply on all

608items, a sealed-bid phase is initiated. Here, the

609ascending proxy auction of Ausubel and Milgrom

610(2001) is imposed. When these two auction designs

611are merged, one must be careful that the activity rules

612work well for both phases of the auction. One wants

613tight activity rules in the ascending phase of the

614auction to ensure that the bidders are forced to bid

615sincerely. However, these rules may need to be

616relaxed or altered during the final sealed-bid phase or

617a straightforward bidder may be precluded from

618providing all of the packages that bidder values

619during the sealed-bid round. Also, theory dictates that

620in order to guaranteed an efficient outcome, losing
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621 bidders (i.e. bidders who dropped out prior to the final

622 phase) must also provide all of the bids that they value

623 in the final phase. Thus, although this hybrid auction is

624 promising in that it is likely to speed up combinatorial

625 auctions, research is still necessary to better

626 understand how the rules of these two disparate

627 auctions should be set so that they mesh well. For

628 more on testing of this design, see Bichler et al. (2011).

629 Complexity of Combinatorial Auctions

630 As the previous discussion illustrates, most

631 combinatorial auction designs requires considerable

632 computation and most of the computational burden

633 falls to the auctioneer. This seems appropriate since

634 the auctioneer wants an auction that allows much

635 participation; bidders should not be required to

636 understand combinatorial optimization in order to

637 participate. In terms of these computations,

638 commercial software, such as CPLEX, GUROBI, or

639 XPRESS have shown their ability to solve such

640 problems in reasonable times (less than 30 minutes).

641 Thus, although there is much in the literature that

642 argues against combinatorial auctions because of the

643 computational burden, the optimization software has

644 proven up to be capable of handling the problems that

645 are currently being considered applicable for this type

646 of auction. For more on the computational issues in

647 computing winner determination problems, see

648 Leyton-Brown et al. (2005) and Bichler et al. (2010).

649 Since multi-item auctions are complex and require

650 bidders to consider multiple alternative bid options, it

651 is important that the computer software used for

652 communication between the bidder and the

653 auctioneer be easy to use and understand. Good

654 graphical user interfaces help bidders to feel

655 comfortable that they understand the current state of

656 the auction (they have been able to find the current

657 price information, the items they are winning, the

658 amount of bidding necessary to remain eligible, their

659 dollar exposure based on what they have bid, etc.). The

660 system must also provide easy ways for bidders to

661 input their next moves and confirm that they have

662 provided the system with the correct information. As

663 the use of auctions is spreading, computer interfaces

664 for such processes continue to improve and to provide

665 better ways of displaying information to the users

666through charts, graphs and pictures. There is likely to

667be continued improvement in this area.

668These tools do not, however, help the bidder

669determine the optimal combination of items to bundle

670as a package and the optimal number of packages to

671supply to the system. Since bidders face the serious

672problem of determining which bids are most likely to

673win at prices that are within the their budgets, tools that

674assist bidders in understanding the state of the auction

675is important. In both supply-chain auctions and in

676high-stakes government auctions (such as spectrum

677auctions), bidder-aided tools are often developed to

678assist the bidder in determining the package or

679packages to submit in any given round. In the case of

680supply-chain auctions, the auctioneer often suggests

681packages to the suppliers that will fit well with other

682bidder’s bids (e.g. by either adding or removing

683a single item from the package, or by considering

684a quantity discount for supplying more of an item).

685Such tools have been found to be very useful and also

686computationally tractable; see Elmaghraby et al.

687(2002), Dunford et al. (2003), and Boutilier et al.

688(2004). Day and Raghavan (2005) and Parkes (2005)

689provide alternative ways for bidders to express

690preferences that do not require that the bidder

691specifying particulap Au2packages to the auctioneer.

692Applications of Combinatorial Auctions

693There are many examples of governments’ using

694auctions for the allocation of valuable assets. In most

695of these auctions, the government is allocating a good

696and uses auctions to determine both the price and the

697allocation. Since 1994, governments throughout the

698world have been using simultaneous multi-round

699auctions for the allocation of spectrum. For spectrum,

700a government has the goal of allocating the good to the

701entities that value it the most with the hope that the bid

702cost will encourage the build-out of the services. To

703assure that there is sufficient competition in the

704telecommunications industry, the U.S. government

705has, in the past, set spectrum caps for each region.

706These auctions have been copied globally and are

707now the standard way that spectrum is allocated.

708Recently, a number of different package-bidding

709designs are being tried including the hierarchical

710ascending auction, the combinatorial clock auction,

711or the clock-proxy design. As of 2005, these auctions
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712 have resulted in revenues in excess of $200 billion

713 dollars worldwide (Cramton 2005).

714 Within the power industry, there has also been

715 an evolutionary movement toward auctions for the

716 determination of who can supply power to the

717 electricity grid and at what price. Most of

718 the allocation is determined one day ahead of the

719 demand. The auction reflects the unique

720 characteristics (both physical and structural) of the

721 industry. The allocation is determined by

722 a complicated optimization that evaluates the

723 demands at various nodes of the networks and prices

724 power generation at each such node. The spot market

725 corrects this allocation for any last minute changes due

726 to weather, plant outages, etc. Long term contracts

727 make this process work.

728 Similarly, auctions have been used to bring

729 market-based forces to control air pollution. Here,

730 a government entity (either nationally run or

731 regionally administered) establishes a fixed number

732 of tradable allowances each of which represents the

733 legal right for its owners to emit a fixed quantity of

734 pollution. A firm holding an allowance can emit the

735 fixed quantity and surrender the allowance to the

736 government, or if the firm can abate its emissions, it

737 can profit by selling the allowance to another polluter

738 than cannot so inexpensively abate emissions. The

739 establishment of the fixed quantity is the cap. The

740 exchange of allowances (credits) between polluters is

741 the trade. See Ellerman et al. (2003) and Tietenberg

742 (2006) for a general overview of cap and trade ideas.

743 The use of combinatorial auctions for the

744 procurement of goods in services has also been

745 growing. Some of these auctions are sealed-bid

746 auctions, while most are moving toward multi-round

747 auction designs. In such auctions, the providers of the

748 goods and services are pre-screened and are then

749 allowed to provide bids for collections of good and/or

750 services as all or nothing packages. For a general

751 survey of supply-chain auctions, see Bichler et al.

752 (2005). The three applications described next

753 highlight a few examples to show how such auctions

754 differ from government auctions.

755 1. The first use of a combinatorial auction within the

756 transportation industry was an auction conducted by

757 Sears. Here, suppliers of freight delivery were

758 allowed to bundle multiple lanes together into

759 a single bid thereby allowing carriers to coordinate

760 multiple businesses and reduce empty or low value

761backhaul movements. It also provided a means to

762incorporate surge demand contingencies into the

763longer (3-year) contracts, thereby lessening the

764need to renegotiate contracts whenever demands

765changed; Ledyard et al. (2002).

7662. Mars Incorporated used a combinatorial auction

767mechanism to procure the necessary goods from

768multiple suppliers allowing bidders to specify

769complex bid structures that indicated quantity

770discounts, minimum supply, and multiple goods

771collected within a single bid. No bidder was

772allowed to supply more than a certain percentage

773of the overall quantity needed and newer suppliers

774were limited more severely than their suppliers they

775had used over a number of years. The algorithm also

776assured that there were multiple suppliers in the

777solution for each critical entity. These auctions are

778not simple, but work to match the needs of

779the procurer, Mars, with the capabilities of the

780suppliers (often farmers). The allocation considers

781geographic, volume and quality factors. The

782suppliers liked the auction mechanism because of

783its transparency, shorter negotiation time and

784fairness; Honer et al. (2003).

7853. Motorola Corporation used auctions for the

786procurement of the multitude of parts needed for

787cellular devices. Motorola needed to reduce both

788the time and the effort required to prepare for and

789conduct negotiations with its suppliers, simplify

790their coordination, and optimize contract awards

791across sectors, in order to save costs; Metty et al.

792(2005).

793Governments are moving toward procuring their

794goods and services in a similar fashion. One such

795example is the use of auctions to determine the

796suppliers of lunches in a large school system. Chile

797spends around US$180 million a year to feed

7981,300,000 students from low income families. To

799improve the quality of the goods and services being

800provided to the school system and to save money, the

801government chose to assign catering contracts in

802a single-round sealed-bid combinational auction. This

803auction resulted in a transparent and objective

804allocation approach, thereby generating competition

805among firms. It also allowed the companies to build

806flexible territorial bids to include their scale of

807economies, leading to more efficient resource

808allocation. This new methodology improved the
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809 price-quality ratio of the meals with yearly savings of

810 around US$40 million, equivalent to the cost of

811 feeding 300,000 children during one year; Epstein

812 et al. (2002).

813 In supply-chain auctions, rules are designed to

814 assure a certain diversification in suppliers and to

815 assure the reliability of the supply chain. In each

816 case, are goals other than revenue maximization or

817 efficiency that drove the auction design. In addition,

818 the auction design must consider the nature of the

819 investment. For spectrum, where there was both

820 uncertainty in the long-term use of the technologies

821 and where the cost of build-out are high, long-term

822 leases were chosen. For energy, auctions are used for

823 a much shorter decision problem. The U. S. Treasury

824 uses multiple auctions for short, medium and

825 long-term debt allocation. Oil and gas exploration

826 must have a relatively long-term horizon where

827 payments for wildcatting are based on the bid price

828 and a yearly rent, whereas payments for extraction are

829 based on bid price and royalties.

830 Thus, one must consider carefully the application

831 when designing the allocation mechanism and the

832 payment scheme. Auction theory and its use is

833 growing because of its proven value. It provides price

834 discovery and signals where more capacity is needed.

835 It is often a fairer and more transparent process for the

836 allocation of goods and services.

837 Conclusions

838 Combinatorial auctions are appropriate for problems

839 where the bidders need to procure a collection of items

840 that contribute to their having a viable business plan.

841 When evaluating alternative designs, one is likely to

842 want to satisfy the following goals:

843 1. The property rights are well-defined

844 2. Bidders are able to, through their bids, announce

845 the entire collection of objects that they need for

846 a given business plan

847 3. The auction results in maximum revenue to the

848 seller

849 4. The auction results in an efficient outcome i.e. all

850 items are collectively allocated to the bidders that

851 value these items the most

852 5. The auction is perceived as fair to all bidders

853 6. The auction ends in a reasonable amount of time

8547. The auction has limited transaction costs, i.e. the

855rules are not so difficult or the bidding so

856complicated that a straightforward bidder finds it

857difficult to participate

8588. The auction cannot be gamed, i.e. truthful bidding

859is an optimal strategy for all bidders

8609. The auction allows price discovery

86110. The auction is computationally feasible and scalable

862It is not possible to have all such attributes obtain

863simultaneously. For each applications, some of these

864goals will be more important than others. One should,

865however, keep all of these goals in mind when

866evaluating a mechanism.

867In addition, the auction mechanism should consider

868any application-specific issues that might arise. For

869example, in government auctions one might want to

870consider how market power impacts the outcome,

871whether there will be sufficient participation, and

872whether the outcome will limit future competition in

873the industry. In certain situations, there may need to be

874a transition period that allows the market to adjust to

875a change in the way rights are allocated; One may have

876to consider the associated rights that a bidder would

877need to be able to use the right being sold or leased in

878the auction; The seller needs to determine if the rights

879are paid for over time or at the end of the auction; The

880money obtained may need to be designated for

881a specific use in order for the government to obtain

882the approval of all constituents. The auction design

883may also need to satisfy other social goals specific to

884the application (e.g. reducing emissions, increasing

885competition, incentivizing innovation, improving

886multi-modal transportation). Similarly, in supply

887chain auctions, a variety of goals need to be

888considered– quality of the goods, price, historical

889dependability of the supplier, among others.

See

890▶Auction and Bidding Models

891▶ Integer and Combinatorial Programming
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