Chapter Title	Combinatorial Auctions	
Copyright Year	2012	
Copyright Holder	Springer Science+Business Media, LLC	
Corresponding Author	Family Name	Hoffman
	Particle	
	Given Name	Karla
	Suffix	
	Division/Department	Department of Systems Engineering and
		Operations Research
	Organization/University	George Mason University
	Street	4400 University Drive
	City	Fairfax
	Postcode	$22030-4444$
	State	VA
	Country	USA
	Email	khoffman@gmu.edu

1

Combinatorial Auctions

Karla Hoffman

Department of Systems Engineering and Operations Research, George Mason University, Fairfax, VA, USA

Introduction

The advent of the Internet has led to the creation of global marketplaces in which sales of everything from low-cost used merchandise to billion dollar government procurements are conducted through auctions. This article concentrates on designs where many items are auctioned simultaneously and where bidders have the flexibility to combine the goods into packages. The discussion (1) highlights alternative combinatorial auction designs and provides the reader with multiple references to resources that describe more fully the underlying theory of these designs., and (2) describes the mechanisms used to evaluate the efficacy of such approaches in terms of their efficiency, equity, and cognitive complexity, and presents some examples of the use of combinatorial auctions for high-value government lease rights, as well as the use of such auctions for supply-chain procurement. These auctions require knowledge of both game theory and combinatorial optimization.

General Concepts

Governments throughout the world use auctions to lease the right to explore and extract minerals, fuel,
and lumber on government properties, to use the 30 airwaves for mobile or broadcast communications, or 31 to control emissions through cap and trade regulations. 32 In addition, the use of business-to-business auctions 33 (often called supply chain auctions) has become 34 a billion-dollar industry. In each of these cases, the 35 need to be able to bundle buys and sells has resulted 36 in new auction theory and designs that enable the 37 simultaneous selling or buying of items using 38 mechanisms that allow participants to indicate their 39 value for the entire package which may have 40 a greater value than the sum of the items within that 41 package. In addition, such auction designs allow users 42 to specify quantity discounts, to indicate budget 43 constraints on the total procurement, and to define 44 other goals of the auction, e.g. social welfare goals in 45 a government auction. These auction designs are 46 computationally more complex for all participants 47 and require languages that allow bidders to express 48 their willingness to participate at a given price for 49 a collection of objects. Such auctions have been 50 termed combinatorial auctions. There are many books 51 that describe the history of auctions, auction theory and 52 its relationship to game theory, and others that are 53 focused exclusively on combinatorial auction 54 designs. For further reading on the subject, see: 55 McMillan (2002) on the history of markets, Krishna 56 (2002) on auction theory, Steiglitz (2007) on the 57 success and pitfalls of EBAY auctions, Klemperer 58 (2008) on auction theory and practice, and Milgrom 59 (2004) and Cramton et al. (2005) on combinatorial 60 auctions. In this review, only the major topics of the 61 field are described, but multiple references are 62 provided for further reading.

In what follows, one-sided auctions are considered and are restricted to the case where there is a single seller and multiple buyers (two-sided auctions are often referred to as exchanges, see Milgrom (2007), Parkes et al. (2001), and Hoffman and Menon (2010) on exchange designs). Since the multiple-sellers/ single-buyer case and the multiple-buyers/ single-seller case are symmetric, the discussion emphasizes the latter, but all results follow for either case. The concentration is on auction designs where that there are multiple items being sold. For at least some of the buyers, a collection of items must be procured to have a viable business plan; consideration is given only to auction designs that allow the packaging of collections of items. Such designs can provide greater efficiency, as well as greater revenue to the seller than the sequential selling of items individually. These designs are sufficiently general to allow bidders to express a value on a package where the collection of items may have a value greater than the individual items (i.e. the goods are complements), as well as on a package where a buyer can express a quantity discount for buying more of the good (i.e. the goods are substitutes).

Why are auctions such a popular mechanism for buying and selling valuable objects? With the advent of the Internet, auctions are capable of reaching many more possible participants. Here, the potential buyers wish to determine the minimum price that they must pay given that they must compete with others for the ownership of a good or collection of goods. From the seller's perspective, submitting goods to an auction may increase the number of buyers, thereby increasing the potential for competitive bidding and higher selling prices. Thus, an auction is a mechanism to determine the market-based price, since the bidders set the price through the competition among the bids. This mechanism is dynamic and reacts to changes in market conditions. The determination of selling prices by an auction is perceived as fairer than if the price were set by bilateral negotiations because all buyers must adhere to the same set of rules. Most importantly, if the rules are well designed, the result will have the goods allocated to the entity that values them the most.

The two basic classes of auctions are described next: (1) sealed bid auctions whereby there is only a single opportunity to provide bids to the auction, and (2) multi-round auctions where bids are taken
over a period of time and any high bid can be 113 overtaken whenever a new bid is received that 114 increases the overall revenue to the seller.

Sealed Bid Auctions

One common auction mechanism is the first-price 117 (sealed bid) auction. In this design, all bidders submit 118 their bids by a specified date. The bids are examined 119 simultaneously and the auctioneer determines the set 120 of bidders that maximizes the revenue to the seller. The 121 optimization problem that determines a collection of 122 package bids that do not often overlap and produce the 123 maximum revenue is known as the Winner 124 Determination Problem (WDP). Mathematically, the 125 problem can be stated as follows:

$$
\begin{equation*}
W D P_{O R}: \operatorname{Max} \sum_{b=1}^{\# B i d s} \text { BidAmount }_{b} x_{b} \tag{1}
\end{equation*}
$$

subject to :

$$
A x \leq 1
$$

$$
\begin{equation*}
x \in\{0,1\} \tag{2}
\end{equation*}
$$

where x_{b} is a zero-one variable which indicates 127 whether bid b loses or wins, respectively. A is an $n 128$ $x \mathrm{~m}$ matrix with m rows, one for each item being 129 auctioned. Each of the n columns represents a bid 130 where there is a one in a given row if the item is 131 included in the bid and zero otherwise. Constraint set 132 (1) specifies that each item can be assigned at most 133 once. Set (1) constraints are equations when the seller 134 chooses to put a minimum price on each item and is 135 unwilling to sell any item below that price. In this case, ${ }_{136}$ there is a set of m bids each with only a single item in 137 the package and a bid price at a price slightly below the 138 minimum opening bid price. In this way, the seller will 139 keep the item rather than allow it to be won by a bidder 140 at less than the opening bid price.

In this formulation of the WDP, the bidder can win 142 any combination of bids, as long as each item is 143 awarded only once; this is referred to as the "OR" 144 language. The problem with this language is that it 145 creates a type of exposure problem, that of winning 146 more than the bidder can afford. When multiple bids of 147 a single bidder can be winning, it is incumbent on the 148 software to highlight the maximum exposure to the 149
bidder. This calculation requires that a combinatorial optimization problem be solved for each bidder that calculates the dollar exposure, creating new computational issues for the auctioneer and may result in packages that are not best for the bidder.

The most natural alternative to this "OR" language is the "XOR" language. In this case, the user supplies every possible combination of bids of interest along with a maximum bid price that she is willing to pay for that package. This language removes the dollar exposure problem, since the maximum number of bids that a bidder can possibly pay is the highest bid amount of any of its bids. The problem with the XOR language is that it places a new burden on the bidder: the bidder is forced to enumerate all possible combinations of packages of interest and their associated values. Clearly, as the number of items in an auction increase, the number of possible bids goes up exponentially. When the XOR bidding language is used the Winner Determination Problem ($\mathrm{WDP}_{\mathrm{XOR}}$) becomes:

$$
\begin{gather*}
\text { WDP } P_{x o r}: \text { Max } \sum_{b=1}^{\# B i d s}{\text { BidAmount } x_{b} x_{b}}^{\text {subject to }:} \\
x=1 \\
\sum_{b \in S_{B}} x_{b} \leq 1 \text { for each bidder B } \\
x_{b} \quad \in\{0,1\}
\end{gather*}
$$

Where S_{B} is the set of bids of bidder B, and constraint set (4) specifies that at most one of these bids can be in the winning set.

Fujishima et al. (1999) proposed a generalization of the OR language that does not require the enumeration of all possible combinations. They label this language OR*. Here, each bidder is supplied dummy items (these items have no intrinsic value to any of the participants). When a bidder places the same dummy item into multiple packages, it tells the auctioneer that the bidder wishes to win at most one of these collections of packages. This language is fully expressive, as long as bidders are supplied sufficient dummy items. This language is also relatively simple for bidders to understand and use, as was shown in a Sears Corporation supply-chain transportation
auction. In that auction, all bids were treated as "OR" 187 bids by the system. Some bidders cleverly chose 188 a relatively cheap item to place in multiple bids 189 thereby making these bids mutually exclusive, 190 Ledyard et al. (2002). There have been a number of 191 alternative bidding languages that have been proposed; 192 see Fujishima et al. (1999), Nisan (2000), Boutilier and 193 Hoos (2001), and Boutelier et al. (2002) for 194 descriptions of alternative languages

One serious flaw in a first-price sealed-bid design is 196 that the bidder can experience what is referred to as the 197 winner's curse, i.e., the winning bidder may pay more 198 than was necessary to win since the second highest bid 199 price was far less than the winning bid amount. For this 200 reason, sealed-bid first price auctions encourage 201 bidders to shave some amount off of the bid price. 202 From a game-theoretic perspective, one wants an 203 auction design that encourages straight-forward 204 honest bidding.

205
An alternative that overcomes this problem is the 206 second price (sealed bid) auction whereby the bidder 207 that has submitted the highest bid is awarded the object 208 (package), but the bidder pays only slightly more (or 209 the same amount) as that bid by the second-highest 210 bidder. In second price auctions with statistically 211 independent private valuations, each bidder has 212 a dominant strategy to bid exactly his valuation. The 213 second price auction also is often called a Vickrey 214 auction (1961).

In a second-price auction, one solves the same 216 winner determination problem as one does for the 217 first-price sealed-bid case, but the winners do not 218 necessarily pay what they bid. Instead, one 219 determines the marginal value to the seller of having 220 this bidder participate in the auction. To do this, for 221 each winning bidder, one calculates the revenue that 222 the seller would receive when that bidder participates 223 in the auction and when that bidder does not, i.e. 224 when none of the bids of this bidder are in the 225 winner determination problem. The difference in 226 the two objective function values is known as the 227 Vickrey-Clarke-Groves discount, named after the 228 three authors, Vickrey (1961), Clarke (1971), and 229 Groves (1973). Each of these authors wrote separate 230 papers producing certain attributes that this auction 231 design has as it relates to incentivizing bidders to 232 reveal their truth value of the goods demanded, and 233 the bidder pays the bid price minus the discount. When 234
winners pay this amount, the auction is known as the Vickrey-Clarke-Groves (VCG) Mechanism.

Although it can be shown that the VCG mechanism encourages truthful bidding, it is almost never used in practice. For a complete list of reasons for it being impractical, see Ausubel and Milgrom (2006) and Rothkopf (2007). In essence, the prices provided by this mechanism may be very low. Worse yet, when items have complementary values, i.e. the package is worth more to the bidder than the sum of the values of the individual items, the outcome may price the items so low that there is a coalition of bidders that would prefer to renege on the auction and negotiate privately with the seller, and the seller may respond by reneging on the sale since both the seller and the coalition of buyers will be better off. Ausubel and Milgrom (2002) argue that prices should be set high enough so that no such coalitions exist. In game theoretic terms, the prices are set such that the outcome is in the core of a coalitional game. These authors introduced an auction design known as the ascending proxy auction in which the bidders provide all bids as if in a sealed-bid auction. Each bidder is provided with a proxy that bids for the bidder in a straightforward manner during an ascending auction. The proxy only announces bids to the auctioneer that maximize the bidder's profit, (i.e. bid price minus announced price) in any given round. The auction continues as an ascending package-bidding auction until, in some round, there are no new bids. Thus, the auction simulates, through proxy bidders, an ascending auction where the increment in each round is infinitesimally small and each bidder, through the use of its proxy, bids in a straight-forward manner. This auction design is very similar to the iBundle design of Parkes and Ungar (2000).

Hoffman et al. (2006) provide a computational approach toward speeding up the calculations associated with this proxy auction design, and Day and Raghavan (2007) provide an elegant mechanism to obtain minimal core prices directly. The direct mechanism of Day and Raghavan sequentially solves winner determination problems to determine losing coalitions that could supply more revenue to the seller at the current prices. When the solution to this optimization problem yields revenue greater than what the VCG mechanism would provide, the prices of the winning bid set are raised so that the total price paid by winning bidders is equal to this new revenue. To
determine these new prices, one must be sure that any 284 winning bidder that forms part of this blocking 285 coalition does not have its price raised from its prior 286 price since it would not be willing to join a coalition if 287 it were to lose revenue relative to its prior offer by the 288 seller. The algorithm is an iterative cutting plane 289 algorithm that forces the prices higher at each 290 iteration until one can find no coalition that can 291 increase revenue to the seller. Therefore, the 292 algorithm finds prices for each winning bidder that 293 are in the core. Since there may be many such 294 minimum core prices, Day and Milgrom (2008) 295 suggest that, in order to encourage sincere bidding, 296 one choose the minimum core prices that are closest 297 in Euclidean distance from the VCG prices. 298 Alternatively, Erdil et al. (2009) argue for a different 299 set of minimum core prices that are based "on a class of 300 'reference rules' in which bidders' payments are, 301 roughly speaking, determined independently of their 302 own bids as far as possible."

303
These core-selecting second-price sealed-bid 304 mechanisms have the following properties: They are 305 in the core, they eliminate the exposure problem, and 306 they encourage bidders to bid sincerely. As with all 307 sealed-bid auctions, they make collusion and 308 punishment for not adhering to tacit agreements 309 extremely difficult.

There are, however, negatives associated with this 311 auction, as well as for all sealed-bid auction designs, in 312 that it puts a significant burden on the bidders. Each 313 bidder needs to assess, for every possible combination 314 of items, whether it is a package of interest and then, 315 for all such packages, determine the maximum it is 316 willing to pay. In addition, such mechanisms do not 317 provide any information about how the packages 318 submitted might fit with packages submitted by other 319 bidders. To overcome these problems, a number of 320 authors have suggested simultaneous ascending 321 combinatorial auction designs that allow users price 322 information during the auction.

Multi-round Auctions

324

Often the value of the good or package of goods being 325 auctioned is not completely known and/or private. 326 Instead, there is a common component to the bid 327 value, that is, the value of the item is not independent 328 of the other bidders, but rather there is a common 329
underlying value as well. In such situations, each agent has partial information about the value. Many high-stakes auctions, such as government auctions for spectrum, oil exploration, and land use, fall into this class. In the case of package-bidding auctions, when there is a common component and bidders want to assess how much others are willing to pay for that item or package of items, the auction is usually an ascending auction with multiple rounds. A round consists of a given time period where bidders have the opportunity to submit new bids. When the round ends, all bids are collected and the winner determination problem is solved. This optimization problem determines the packages that provide the seller with the maximum revenue. The bids that are in the winning set are labeled "provisionally winning," i.e. they would be winning if the auction ended in this round. Thus, in an ascending combinatorial auction, all items are sold simultaneously and a bidder can bid on any collection of items in a given round. To overcome the current set of provisionally winning bids, a bidder must submit a bid that increases the total revenue to the seller.

There are a number of design question that must be answered to have a complete combinatorial auction design:

1. How does the auction end?
2. Must bidders participate in every round?
3. Are bids from previous rounds part of the bids considered by the winner determination problem?
4. How are the prices set in each round?
5. What do bidders know about the bids of other bidders?
6. What other rules might be necessary to ensure that collusion is avoided, to make reneging costly, and to encourage bidders to act truthfully?
Of importance is how to assure that the auction ends in a reasonable period of time and that price discovery (the main reason for a multi-round auction) is accomplished. Most package-bidding auctions have discrete time periods, called rounds, and in each round, the auctioneer provides a price to the user that is the minimum price that the bidder must supply in order to place a new bid. One can choose either a fixed stopping rule or a stopping rule that is determined dynamically. A fixed time stopping rule specifies that the auction will end at a given time. With a fixed stopping time, bidders are encouraged to not provide any bids until the very last seconds of the auction,
called sniping. The purpose of sniping is to give other 379 bidders no chance of responding to an offer. In this 380 way, a bidder can acquire price information from other 381 bidders but does not reciprocate, since throughout 382 most of the auction, the bidder is silent. If all bidders 383 chose to snipe and provide no bids until the end of the 384 auction, the auction essentially becomes a first-price 385 sealed-bid auction. To overcome the problem of 386 sniping and to encourage price discovery, most 387 package bidding auctions use an alternative stopping 388 criteria whereby the auction ends when no new bids are 389 presented within a round.

Often, for high-stakes multi-round auctions, there 391 are also activity rules that require a bidder to bid in 392 a consistent way throughout the auction. Activity rules 393 force bidders to maintain a minimum level of bidding 394 activity to preserve their eligibility to bid in the future. 395 Thus, a bidder desiring a large quantity at the end of the 396 auction (when prices are high) must bid for a large 397 quantity early in the auction (when prices are low). If 398 the bidder cannot afford to bid on a sufficient number 399 of items to maintain current eligibility, then eligibility 400 will be reduced so that it is consistent with current 401 bidding. Once eligibility is decreased, it can never be 402 increased. As the auction progresses, the activity 403 requirement increases, reducing a bidder's flexibility. 404 The lower activity requirement early in the auction 405 gives the bidder greater flexibility in shifting among 406 packages early on when there is the most uncertainty 407 about what will be obtainable. Precisely how the 408 activity and eligibility rules are set matters and must 409 be depend upon the type of auction - the value of the 410 items being auctioned, the projected length of the 411 auction, the number of participants, etc. In many 412 high-stakes auctions, such as spectrum or electricity, 413 these activity rules have proven highly successful, 414 Klemperer (2002), McMillan (2002), and Milgrom 415 (2004).

416

In an ascending multi-round auction design, the 417 auctioneer must provide information about the 418 current value of each package. This information is 419 used for two related purposes: (1) to specify the 420 minimum bid for each item or package in the next 421 round and (2) to provide valuation information to 422 bidders so that they can determine what might be 423 required for a bid to be winning in a subsequent 424 round. While pricing information is easy to ascertain 425 in single item auctions or in simultaneous multi-round 426 auctions without package bidding, (i.e. where bids can 427
be placed on only single items), pricing information for combinatorial auctions is not well defined. Bidders provide only aggregate package prices without providing the information about how each of the individual components that made up the bundle contributes to the overall price. Attempting to disaggregate these bundles into single item prices unambiguously is not possible. Also, since there are many ways that some bundle might partner with other packages to create a winning set, determining the minimal cost partnering for a given package by a given bidder is a complex problem.

To further complicate the pricing issue, bidders may view certain items as substitutes and other items as complements. In the case where items are substitutes, bidders are likely to express sub-additive values for their packages. That is, the value of a package of items is less than or equal to the sum of the values of the items that make up the package. In the complementary case, bidders are likely to express super-additive values for packages. In this case, the value of a package of items is greater than or equal to the sum of the values of the items that make up the package. When items can be both substitutes and complements for bidders, providing unambiguous, complete and accurate price information is an unsolved problem. The non-convex nature of the problem means that the linear prices (i.e. the sum of a package is equal to the sum of the individual items that make up the package) that can be obtained from dual prices from the linear relaxation of the WDP problem will overestimate the true values of the items. In most auctions, one adjusts the dual prices so that the prices are modified so that when one sums the items in each of the winning packages, the prices on those packages exactly equal the prices bid by the provisionally winning bidders (i.e. the winners at the end of the current round). Rassenti et al. (1982) terms these prices pseudo-dual prices. (For theoretical issues with duals associated with non-convex problems see Wolsey(1981), and for non-anonymous non-linear prices see deVries and Vohra (2003) and Bikhchandani and Ostroy (2001).)

Although linear pricing cannot accommodate all aspects of the pricing associated with the non-linear, non-convex, winner determination problem, there are still good reasons for considering its use for determining future bid requirements. First, even perfect pricing is only correct when all other aspects of the problem remain fixed, i.e. when bid amounts
remain the same on all other bids and when no new 477 bids are submitted. Second, a dual price associated 478 with a given constraint is only correct when one 479 changes this single restriction (the right-hand-side of 480 the associated constraint) by a very small amount. In 481 the case of combinatorial auctions, the item is either 482 won or it is not. Changes to a constraint would either 483 remove the item entirely from consideration or create 484 a second identical item. Thus, even non-linear, 485 non-anonymous pricing has serious limitations in the 486 context of the winner determination problem since 487 the removal of a single item from the auction (e.g. 488 the removal of the New York City market from 489 consideration in a nationwide spectrum auction) may 490 change the willingness of bidders to participate. 491

Finally, in an ascending bid auction, bidders need 492 pricing information that is easy to use and understand, 493 and is perceived to be fair. In this situation, easy to use 494 means that bidders can quickly compute the price of 495 any package, whether or not it had been previously bid. 496 Often, bidders want to know what it would take for 497 such a bid to be competitive, i.e. have some possibility 498 of winning in the next round. Bidders may also 499 perceive such prices to be fair since all bidders must 500 act on the same information. Linear prices are likely to 501 move the auction along and deter such gaming 502 strategies as parking (parking is an approach whereby 503 the bidder bids on packages that currently have very 504 low prices knowing that these packages have 505 a very low probability of winning). Bidding on such 506 low-priced packages allows a bidder to maintain 507 eligibility (by maintaining activity), while hiding 508 interest in the packages that are really desired until 509 later in the auction). Thus, virtually all ascending 510 combinatorial auctions use pseudo-dual pricing. For 511 more on alternative pricing within this general 512 framework and the testing thereof, see (Dunford et al. 513 (2003), Bichler et al. (2009) and Brunner et al. (2011). 514

In 1999, DeMartini et al. proposed an auction 515 design labeled The Resource Allocation Design or 516 RAD where the WDP is solved each round and all 517 losing bidders can only bid on packages where the 518 package price is the sum of the pseudo-dual prices 519 plus some increment (as announced by the 520 auctioneer). There is no activity rule for this auction 521 design. In 2002, the Federal Communications 522 Commission (FCC) announced a similar package 523 bidding design but proposed refinements to the 524 pseudo-price calculations that attempts to limit 525
fluctuations (both positive and negative) in prices. A related design was proposed by Bichler et al. (2009) and is called the Approximate Linear Pricing Scheme (ALPS). It also uses similar rules but chooses the ask price to better balance prices across items. Note that all of these pricing procedures allow prices to both increase and decrease depending upon the packages that are in the winning set. In virtually all of these designs, any bid submitted in any round is considered active throughout the auction. This rule works well with the XOR language since only one bid of a bidder can be in an optimal set and bidders should be willing to win bids placed in early rounds of the auction, when prices were low. This rule forces bidders to provide sincere bids throughout the auction.

A very different ascending package bidding design was proposed by Porter et al. (2003). It is called the combinatorial clock auction. In this design, the auctioneer provides prices for each unique good (if there are multiple identical items, then the bidder indicates that number of units of that item they desire) based solely on whether there is more demand for the item than for supply; no WDP problem is solved. There is no concept of a provisionally winning bidder. Instead, prices increase whenever demand for a given item is greater than supply. Bidders indicate the single package bid that is best given the per-unit prices announced by the auctioneer. All bidders must rebid on any item that they wish to procure in each round. The only information provided to bidders at the end of each round is the quantity demanded for each item and the price for the next round. As long as demand exceeds supply for at least one item, the price is increased for those items with excess demand. If there are no new bids in a round and supply equals demand, then the auction ends. However, it may happen that when there are no new bids, demand has been reduced to below supply. If this occurs, a WDP is solved using all bids from all rounds. If the computed prices do not displace any bids from the last round, then the auction ends. Otherwise, the auction resumes with the prices determined by using the pseudo-prices calculated from the WDP. Thus, for most rounds, the computation has been drastically reduced to merely increasing prices by a given increment. Only, when demand has dropped below supply is the WDP solved.

Other approaches are the auction designs that simplify the problem by only allowing a few pre-defined packages (Harstad et al. 1998) for which
the WDP is polynomially solvable. This idea of only 575 allowing a certain pre-determined set of packages 576 (called hierarchical packages, Goeree and Holt 2010) 577 was used in the 2009 FCC auction for broadband 578 spectrum that brought over \$19B into the U.S. 579 Treasury. In that design, all bids were additive 580 (the OR language applied) and the WDP was solved 581 in linear time. When it is possible, in advance, to 582 understand the needs of the bidders and when the 583 packages most desired can be represented in 584 a hierarchical fashion, then one obtains an auction 585 design that is both simpler and quite efficient. 586 However, if the demand for packages does not take 587 on this hierarchical structure, then imposing such 588 structure on the problem for the sake of 589 computability will likely lead to less efficient 590 outcomes.

Hybrid Designs

592

Ausubel et al. (2006) have argued for a hybrid design 593 that reduces the computational burden on both the 594 bidder and the auctioneer. Here, one first uses 595 a combinatorial clock design followed by a last round 596 second-price sealed-bid approach. The combinatorial 597 clock is similar to that proposed by Porter et al. (2003) 598 with the further enhancement that bidders who find the 599 increment too high are able to place a bid at a price 600 between the old price and the new price that indicates 601 the maximum amount the bidder is willing to pay for 602 that combination of items. In this way, the efficiency 603 loss due to increment size is lessened. This phase of the 604 auction ends when demand is less than or equal to 605 supply or when demand on most items has trailed off. 606 When demand does not exactly equal supply on all 607 items, a sealed-bid phase is initiated. Here, the 608 ascending proxy auction of Ausubel and Milgrom 609 (2001) is imposed. When these two auction designs 610 are merged, one must be careful that the activity rules 611 work well for both phases of the auction. One wants 612 tight activity rules in the ascending phase of the 613 auction to ensure that the bidders are forced to bid 614 sincerely. However, these rules may need to be 615 relaxed or altered during the final sealed-bid phase or 616 a straightforward bidder may be precluded from 617 providing all of the packages that bidder values 618 during the sealed-bid round. Also, theory dictates that 619 in order to guaranteed an efficient outcome, losing 620
bidders (i.e. bidders who dropped out prior to the final phase) must also provide all of the bids that they value in the final phase. Thus, although this hybrid auction is promising in that it is likely to speed up combinatorial auctions, research is still necessary to better understand how the rules of these two disparate auctions should be set so that they mesh well. For more on testing of this design, see Bichler et al. (2011).

Complexity of Combinatorial Auctions

As the previous discussion illustrates, most combinatorial auction designs requires considerable computation and most of the computational burden falls to the auctioneer. This seems appropriate since the auctioneer wants an auction that allows much participation; bidders should not be required to understand combinatorial optimization in order to participate. In terms of these computations, commercial software, such as CPLEX, GUROBI, or XPRESS have shown their ability to solve such problems in reasonable times (less than 30 minutes). Thus, although there is much in the literature that argues against combinatorial auctions because of the computational burden, the optimization software has proven up to be capable of handling the problems that are currently being considered applicable for this type of auction. For more on the computational issues in computing winner determination problems, see Leyton-Brown et al. (2005) and Bichler et al. (2010).

Since multi-item auctions are complex and require bidders to consider multiple alternative bid options, it is important that the computer software used for communication between the bidder and the auctioneer be easy to use and understand. Good graphical user interfaces help bidders to feel comfortable that they understand the current state of the auction (they have been able to find the current price information, the items they are winning, the amount of bidding necessary to remain eligible, their dollar exposure based on what they have bid, etc.). The system must also provide easy ways for bidders to input their next moves and confirm that they have provided the system with the correct information. As the use of auctions is spreading, computer interfaces for such processes continue to improve and to provide better ways of displaying information to the users
through charts, graphs and pictures. There is likely to 666 be continued improvement in this area.

These tools do not, however, help the bidder 668 determine the optimal combination of items to bundle 669 as a package and the optimal number of packages to 670 supply to the system. Since bidders face the serious 671 problem of determining which bids are most likely to 672 win at prices that are within the their budgets, tools that 673 assist bidders in understanding the state of the auction 674 is important. In both supply-chain auctions and in 675 high-stakes government auctions (such as spectrum 676 auctions), bidder-aided tools are often developed to 677 assist the bidder in determining the package or 678 packages to submit in any given round. In the case of 679 supply-chain auctions, the auctioneer often suggests 680 packages to the suppliers that will fit well with other 681 bidder's bids (e.g. by either adding or removing 682 a single item from the package, or by considering 683 a quantity discount for supplying more of an item). 684 Such tools have been found to be very useful and also 685 computationally tractable; see Elmaghraby et al. 686 (2002), Dunford et al. (2003), and Boutilier et al. 687 (2004). Day and Raghavan (2005) and Parkes (2005) 688 provide alternative ways for bidders to express 689 preferences that do not require that the bidder 690 specifying particulap packages to the auctioneer. 691 Au2

Applications of Combinatorial Auctions

692

There are many examples of governments' using 693 auctions for the allocation of valuable assets. In most 694 of these auctions, the government is allocating a good 695 and uses auctions to determine both the price and the 696 allocation. Since 1994, governments throughout the 697 world have been using simultaneous multi-round 698 auctions for the allocation of spectrum. For spectrum, 699 a government has the goal of allocating the good to the 700 entities that value it the most with the hope that the bid 701 cost will encourage the build-out of the services. To 702 assure that there is sufficient competition in the 703 telecommunications industry, the U.S. government 704 has, in the past, set spectrum caps for each region. 705 These auctions have been copied globally and are 706 now the standard way that spectrum is allocated. 707 Recently, a number of different package-bidding 708 designs are being tried including the hierarchical 709 ascending auction, the combinatorial clock auction, 710 or the clock-proxy design. As of 2005, these auctions 711
have resulted in revenues in excess of $\$ 200$ billion dollars worldwide (Cramton 2005).

Within the power industry, there has also been an evolutionary movement toward auctions for the determination of who can supply power to the electricity grid and at what price. Most of the allocation is determined one day ahead of the demand. The auction reflects the unique characteristics (both physical and structural) of the industry. The allocation is determined by a complicated optimization that evaluates the demands at various nodes of the networks and prices power generation at each such node. The spot market corrects this allocation for any last minute changes due to weather, plant outages, etc. Long term contracts make this process work.

Similarly, auctions have been used to bring market-based forces to control air pollution. Here, a government entity (either nationally run or regionally administered) establishes a fixed number of tradable allowances each of which represents the legal right for its owners to emit a fixed quantity of pollution. A firm holding an allowance can emit the fixed quantity and surrender the allowance to the government, or if the firm can abate its emissions, it can profit by selling the allowance to another polluter than cannot so inexpensively abate emissions. The establishment of the fixed quantity is the cap. The exchange of allowances (credits) between polluters is the trade. See Ellerman et al. (2003) and Tietenberg (2006) for a general overview of cap and trade ideas.

The use of combinatorial auctions for the procurement of goods in services has also been growing. Some of these auctions are sealed-bid auctions, while most are moving toward multi-round auction designs. In such auctions, the providers of the goods and services are pre-screened and are then allowed to provide bids for collections of good and/or services as all or nothing packages. For a general survey of supply-chain auctions, see Bichler et al. (2005). The three applications described next highlight a few examples to show how such auctions differ from government auctions.

1. The first use of a combinatorial auction within the transportation industry was an auction conducted by Sears. Here, suppliers of freight delivery were allowed to bundle multiple lanes together into a single bid thereby allowing carriers to coordinate multiple businesses and reduce empty or low value
backhaul movements. It also provided a means to 761 incorporate surge demand contingencies into the 762 longer (3 -year) contracts, thereby lessening the 763 need to renegotiate contracts whenever demands 764 changed; Ledyard et al. (2002).

765
2. Mars Incorporated used a combinatorial auction 766 mechanism to procure the necessary goods from 767 multiple suppliers allowing bidders to specify 768 complex bid structures that indicated quantity 769 discounts, minimum supply, and multiple goods 770 collected within a single bid. No bidder was 771 allowed to supply more than a certain percentage 772 of the overall quantity needed and newer suppliers 773 were limited more severely than their suppliers they 774 had used over a number of years. The algorithm also 775 assured that there were multiple suppliers in the 776 solution for each critical entity. These auctions are 777 not simple, but work to match the needs of 778 the procurer, Mars, with the capabilities of the 779 suppliers (often farmers). The allocation considers 780 geographic, volume and quality factors. The 781 suppliers liked the auction mechanism because of 782 its transparency, shorter negotiation time and 783 fairness; Honer et al. (2003).
3. Motorola Corporation used auctions for the 785 procurement of the multitude of parts needed for 786 cellular devices. Motorola needed to reduce both 787 the time and the effort required to prepare for and 788 conduct negotiations with its suppliers, simplify 789 their coordination, and optimize contract awards 790 across sectors, in order to save costs; Metty et al. 791 (2005). 792

Governments are moving toward procuring their 793 goods and services in a similar fashion. One such 794 example is the use of auctions to determine the 795 suppliers of lunches in a large school system. Chile 796 spends around US $\$ 180$ million a year to feed 797 1,300,000 students from low income families. To 798 improve the quality of the goods and services being 799 provided to the school system and to save money, the 800 government chose to assign catering contracts in 801 a single-round sealed-bid combinational auction. This 802 auction resulted in a transparent and objective 803 allocation approach, thereby generating competition 804 among firms. It also allowed the companies to build 805 flexible territorial bids to include their scale of 806 economies, leading to more efficient resource 807 allocation. This new methodology improved the 808
price-quality ratio of the meals with yearly savings of around US $\$ 40$ million, equivalent to the cost of feeding 300,000 children during one year; Epstein et al. (2002).

In supply-chain auctions, rules are designed to assure a certain diversification in suppliers and to assure the reliability of the supply chain. In each case, are goals other than revenue maximization or efficiency that drove the auction design. In addition, the auction design must consider the nature of the investment. For spectrum, where there was both uncertainty in the long-term use of the technologies and where the cost of build-out are high, long-term leases were chosen. For energy, auctions are used for a much shorter decision problem. The U. S. Treasury uses multiple auctions for short, medium and long-term debt allocation. Oil and gas exploration must have a relatively long-term horizon where payments for wildcatting are based on the bid price and a yearly rent, whereas payments for extraction are based on bid price and royalties.

Thus, one must consider carefully the application when designing the allocation mechanism and the payment scheme. Auction theory and its use is growing because of its proven value. It provides price discovery and signals where more capacity is needed. It is often a fairer and more transparent process for the allocation of goods and services.

Conclusions

Combinatorial auctions are appropriate for problems where the bidders need to procure a collection of items that contribute to their having a viable business plan. When evaluating alternative designs, one is likely to want to satisfy the following goals:

1. The property rights are well-defined
2. Bidders are able to, through their bids, announce the entire collection of objects that they need for a given business plan
3. The auction results in maximum revenue to the seller
4. The auction results in an efficient outcome i.e. all items are collectively allocated to the bidders that value these items the most
5. The auction is perceived as fair to all bidders
6. The auction ends in a reasonable amount of time
7. The auction has limited transaction costs, i.e. the 854 rules are not so difficult or the bidding so 855 complicated that a straightforward bidder finds it 856 difficult to participate 857
8. The auction cannot be gamed, i.e. truthful bidding 858 is an optimal strategy for all bidders 859
9. The auction allows price discovery 860
10. The auction is computationally feasible and scalable 861

It is not possible to have all such attributes obtain 862 simultaneously. For each applications, some of these 863 goals will be more important than others. One should, 864 however, keep all of these goals in mind when 865 evaluating a mechanism.

In addition, the auction mechanism should consider 867 any application-specific issues that might arise. For 868 example, in government auctions one might want to 869 consider how market power impacts the outcome, 870 whether there will be sufficient participation, and 871 whether the outcome will limit future competition in 872 the industry. In certain situations, there may need to be 873 a transition period that allows the market to adjust to 874 a change in the way rights are allocated; One may have 875 to consider the associated rights that a bidder would 876 need to be able to use the right being sold or leased in 877 the auction; The seller needs to determine if the rights 878 are paid for over time or at the end of the auction; The 879 money obtained may need to be designated for 880 a specific use in order for the government to obtain 881 the approval of all constituents. The auction design 882 may also need to satisfy other social goals specific to 883 the application (e.g. reducing emissions, increasing 884 competition, incentivizing innovation, improving 885 multi-modal transportation). Similarly, in supply 886 chain auctions, a variety of goals need to be 887 considered- quality of the goods, price, historical 888 dependability of the supplier, among others.

See

- Auction and Bidding Models 890
$>$ Integer and Combinatorial Programming
891

References

892

Ausubel, L. M., Cramton, P., \& Milgrom, P. (2005). The clock 893 proxy auction. In P. Cramton, Y. Shoham, \& R. Steinberg 894 (Eds.), Combinatorial auctions (pp. 113-136). MIT Press. 895

Ausubel, L. M., \& Milgrom, P. (2002). Ascending auctions with package bidding. Frontiers of Theoretical Economics, 1, 1-42.
Ausubel, L. M., \& Milgrom, P. (2006). The lovely but lonely Vickrey auction. In P. Cramton, Y. Shoham, \& R. Steinberg (Eds.), Combinatorial auctions. Cambridge, MA: MIT Press.
Bichler, M. (2011). Auctions: Complexity and algorithms. In Wiley encyclopedia of operations research and management science. John Wiley and Sons.
Bichler, M., Shabalin, P., \& Wolf, J. Efficiency, auction revenue, and bidding behavior in the combinatorial clock auction. Technical Report available from M. Bichler.
Bichler, M., Davenport, A., Hohner, G., \& Kalagnanam, J. (2006). Industrial procurement auctions. In P. Crampton, Y. Shoam, \& R. Steinberg (Eds.), Combinatorial auctions (pp. 593-612). MIT Press.
Bichler, M., Shabalin, S., \& Pikovsky, A. (2009). A computational analysis of linear price iterative combinatorial auction formats. Information Systems Research, 20(1), 33-59.
Bikhchandani, S., DeVries, S., Schummer, J., \& Vohra, R. (2002). Linear programming and Vickrey auctions. In B. Dietrich \& R. Vohra (Eds.), Mathematics of the internet: Eauctions and markets (pp. 75-115).
Bikhchandani, S., \& Ostroy, J. M. (2002). The package assignment model. Journal of Economic Theory, 107, 337-406.
Boutilier, C., \& Hoos, H. H. (2001). Bidding languages for combinatorial auctions. Seventh International Joint Conference on Artificial Intelligence (IICAI-01), 1211-1217.
Boutilier, C., Sandholm, T., \& Shields, R. (2004). Eliciting bid taker non-price preferences in "Combinatorial Auctions". In V. Khu-Smith \& C. J. Mitchell (Eds.), Proceedings of the national conference on artificial intelligence (pp. 204-211). San Jose, CA.
Brunner, C., Goeree, J. K., Holt, C. H., \& Ledyard, J. O. (2011). An experimental test of flexible combinatorial spectrum auction formats. American Economic Journal: Microeconomics, 2, 39-57.
Cason, T. N. (1993). Seller incentive properties of EPA's emission trading auction. Journal of Environmental Economics and Management, 25, 177-195.
Clarke, E. (1971). Multipart pricing of public goods. Public Choice, 8, 19-33.
Cramton, P. (2005). Simultaneous ascending auctions. In P. Cramton, Y. Shoham, \& R. Steinberg (Eds.), Combinatorial auctions (pp. 99-114). MIT Press.
Cramton, P., Shoham, Y., \& Steinberg, R. (Eds.). (2005). Combinatorial auctions (pp. 99-114). MIT Press.
Day, R., \& Milgrom, P. (2008). Core-selecting package auctions. International Journal of Game Theory, 36(3), 393-407. Springer.
Day, R., \& Raghavan, S. (2005). Assignment preferences and combinatorial auctions. Working paper, Operations and information management school of business, University of Connecticut. http://users.business.uconn.edu/bday/index.htm
DeMartini, C., Kwasnica, A. M., Ledyard, J. O., \& Porter, D. (1999). A new and improved design for multi-object iterative auctions, Social Working Paper. Pasadena, CA: Division of the Humanities and Social Sciences, California Institute of Technology.

DeVries, S., \& Vohra, R. (2003). Combinatorial auctions: 957 A survey. INFORMS Journal on Computing, 15(3), 284-309. 958
Dunford, M., Hoffman, K., Menon, D., Sultana, R., \& Wilson, T. 959 (2003). Price estimates in ascending combinatorial auctions, 960 Technical Report. Fairfax, VA: George Mason University, 961 Systems Engineering and Operations Research Department. 962
Ellerman, A. D., Joskow, P. L., Montero, J., Schmalensee, R., \& 963 Bailey, E. M. (2000). Markets for clean air: The U.S. acid 964 rain program. Cambridge University Press.

965
Epstein, R., Henriquez, L., Catalan, J., Weintraub, G., \& 966 Martinez, C. (2002). A combinatorial auction improves 967 school meals in Chile. Interfaces, 32(6), 1-14.
Erdil, A., Klemperer, P., Cramton, P., Dijkstra, G., Goeree, J., 969 Marszalec, D., Meyer, M., Milgrom, P., Pagnozzi, M., \& 970 Parkes, D. C. (2009). A new payment rule for core-selecting 971 package auctions. Technical report available on Paul 972 Klemperer's website.
Friedman, D., \& Rust, J. (Eds.). (1993). The double auction 974 market: Institutions, theories and evidence (Santa Fe 975 Institute studies in the sciences of complexity, Vol. XIV). 976 Addison Wesley.
Fujishima, Y., Leyton-Brown, K., \& Shoham, Y. (1999). 978 Taming the computational complexity of combinatorial 979 auctions: Optimal and approximate approaches. 980 Proceedings of IJCAI 1999, 548-553.

981
Goeree, J. K., \& Holt, C. A. (2010). Hierarchical package 982 bidding: A paper \& pencil combinatorial auction. Games 983 and Economic Behavior, 70(1), 146-169.
Groves, T. (1973). Incentives in teams. Econometrica, 41, 985 617-631.
Harstad, R., Pekec, A., \& Rothkopf, M. H. (1998). 987 Computationally manageable combinatorial auctions. 988 Management Science, 44, 1131-1147. 989
Hoffman, K., Menon, D., van den Heever, S. A., \& Wilson, T. 990 Au3 Observations and near-direct implementations of the 991 ascending proxy auction. In P. Cramton, Y. Shoham, \& 992 R. Steinberg (Eds.), Combinatorial auctions (pp. 415-450). 993 MIT Press.

994
Hoffman, K., \& Menon, D. (2010). A practical combinatorial 995 clock exchange for spectrum licenses. Decision Analysis, 996 7(1), 58-77.
Hoffman, K., Menon, D., \& van Den Heever, S. A. (2008). 998 A package bidding tool for the FCC's spectrum auctions 999 and its effect on auction outcomes. Telecommunications 1000 Modeling Policy and Technology: Operations Research/ 1001 Computer Sciences Interfaces Series, 44, 153-189.
Holt, C. A., Shobe, W., Burtraw, D., Palmer, K., \& Goeree, J. 1003 (2007). Auction design for selling CO_{2} emission allowances 1004 under the regional greenhouse gas initiative. Regional 1005 greenhouse gas initiative. Technical Report to RGGI. 1006
Honer, G., Rich, J., Ng, E., Reid, G., Davenport, A., 1007 Kalagnanam, J., Lee, H. S., \& An, C. (2003). 1008 Combinatorial and quantity discount procurement auctions 1009 benefit mars, incorporated and its suppliers. Interfaces, 1010 33(1), 23-35.
Klemperer, P. (1999). Auction theory: A guide to the literature. 1012 Journal of Economic Surveys, 13(3), 227-286. 1013
Klemperer, P. (2002). What really matters in auction design. 1014 Journal of Economic Perspectives, 16, 169-189. 1015

1016 Klemperer, P. (2004). Auctions: Theory and practice (The

1017
1018
1019 Koboldt, C., Maldoom, D., \& Marsden, R. (2003). The first 1020 combinatorial spectrum auction. Ofcom Technical Report 1021 describing the results of the 2003 Nigerian Spectrum 1022 Auction, available on of com website.
1023 Krishna, V. J. (2002). Auction theory. Academic Press, 200pp. 1024 Kwasnica, A. M., Ledyard, J. O., Porter, D., \& DeMartini, C. 1025 (2005). A new and improved design for multi-object iterative 1026 auctions. Management Science, 51, 419-4234.

Ledyard, J. O., Olson, M., Porter, D., Swanson, J. A., \& Torma, D. P. (2002) The first use of a combined value auction for transportation services. 32, 4-12.
Lehmann, D., Mueller, R., \& Sandholm, T. (2005). The winner determination problem. In P. Cramton, Y. Shoham, \& R. Steinberg (Eds.), Combinatorial auctions. Cambridge, MA: MIT Press.
Leyton-Brown, K., Nudelman, E., \& Shoham, Y. (2005). Empirical hardness models. In P. Cramton, Y. Shoham, \& R. Steinberg (Eds.), Combinatorial auctions (pp. 479-503). MIT Press.
McMillan, J. (2002). Reinventing the bazaar: A natural history of markets. Norton Press, 278pp.
Metty, T., Harlan, R., Samelson, Q., Moore, T., Morris, T., \& Sorenson, R. (2005). Reinventing the supplier negotiation process at motorola. Interfaces, 35(1), 7-23.
Milgrom, P. (2004). Putting auction theory to work. Cambridge Press, 368pp.
Milgrom, P. (2007). Package auctions and exchanges. Econometrica, 75(4), 935-965.
Nisan, N. (2000). Bidding and allocation in combinatorial auctions. Proceedings of the 2nd ACM Conference on Electronic Commerce, 1-12.
O’Neill, R. P., Helman, U., Hobbs, B., Stewart, W. R., \& Rothkopf, M. (2007). The joint energy and transmission rights auction: A general framework for RTO market designs. Power Engineering Review, IEEE, 22(10), 59-68.

Parkes, D. C. (2005). Auction design with costly preference 1054 elicitation. Annals of Mathematics and AI, 44, 269-302.

1055
Parkes, D. C., Kalagnanam, J., \& Eso, M., (2001). Achieving 1056 budget-balance with Vickrey-based payment schemes in 1057 combinatorial exchanges. Proceedings of the 17th 1058 International Joint Conference on Artificial Intelligence 1059 (IJCAI-01), 1161-1168.

1060
Parkes, D. C., \& Ungar, L. H. (2000). Iterative combinatorial 1061 auctions: Theory and practice. Proceedings of the 17th 1062 National Conference on Artificial Intelligence (AAAI-00), 1063 74-81.

1064
Pekec, A., \& Rothkopf, M. H. (2006). Non-computational 1065 approaches to mitigating computational problems in 1066 combinatorial auctions. In P. Cramton, Y. Shoham, \& 1067 R. Steinberg (Eds.), Combinatorial auctions. M.I.T. Press. 1068

Porter, D., Rassenti, S., Roopnarine, A., \& Smith, V. (2003). 1069 Combinatorial auction design. Proceedings of the National 1070 Academy of Sciences, 100(19), 11153-11157.

1071
Porter, D., \& Smith, V. (2006). FCC license experiment design: 1072 A 12-year experiment. Journal of Law Economics and 1073 Policy, 3, 63-80.
Rassenti, S., Smith, V., \& Bulfin, R. I. (1982). A combinatorial 1075 mechanism for airport time slot allocation. Bell Journal of 1076 Economics, 13, 402-417

1077
Rothkopf, M. H. (2007). Thirteen reasons why the 1078 Vickrey-Clarke-Groves process is not practical. Operations 1079 Research, 55(2), 191-197.

1080
Steiglitz, K. (2007). Snipers, shills and sharks: eBay and human 1081 behavior. Princeton University Press, 298pp. 1082
Tietenberg, T. H. (2006). Emissions trading: Principles and 1083 practice (2nd ed.). Washington: RFF Press. 1084
Vickrey, W. (1961). Counter-speculation, auctions and 1085 competitive sealed tenders. Journal of Finance, 16, 8-37. 1086
Wolsey, L. A. (1981). Integer programming duality: Price 1087 functions and sensitivity analysis. Mathematical 1088 Programming, 20(1), 173-195.

1089
Wurman, P. R., \& Wellman, M. P. (1999). Equilibrium prices in 1090 bundle auctions, Sante Fe Institute Working Papers (Paper: 1091 99-09-064).

Author Query Form

Encyclopedia of Operations Research and Management Science Chapter No: 1139

Query Refs.	Details Required	Author's response
AU1	Please provide details of Klemperer (2008), Boutelier et al. (2002), Hoffman et al. (2006), Day and Raghavan (2007), Bikhchandani and Ostroy (2001), Ausubel et al. (2006), Ausubel and Milgrom (2001), Bichler et al. (2011), Bichler et al. (2010), Elmaghraby et al.. (2002), Ellerman, et al. (2003), Bichler et al. (2005) in the reference list.	
AU2	Please check the spelling of "particulap."	
AU3	Please provide year of publishing for Hoffman et al. and Bichler et al.	
AU4	Please provide journal title for Ledyard et al. (2002).	

