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The airline industry in the United States provides one of the major modes of trans-

portation. It is a highly connected network used by over 712.6 million people in 2010 [FAA,

2011] and is the most common means of travel for origin-destination pairs of greater than

250 miles. In 2007, due to a high volume of flights and an inefficient allocation of resources,

congestion was generated in the system that was estimated to cost $32 billion to the overall

economy [Ball et al., 2010]. This has forced the U.S. Department of Transportation (DOT)

to provide alternate solutions to allocate system resources more efficiently, thus relieving

congestion.

Researchers have proposed alternate “day of operations” schemes to allocate runway

access including, ration-by-schedule (RBS), permits, auctions, credit points, and congestion

pricing. In “congestion pricing system,” prices are announced for runway access for each

time window and the users respond by either paying the announced price for using it, or not

paying it and competing for runway access for later time windows. By charging airlines to

use the scarce runway access, the aim is to provide service to those who value it the most.

Congestion pricing has been successfully used for regulating access to ground transportation

(e.g. highways, downtown areas).



Previous approaches developed the congestion pricing model for air transportation by

using theoretical models such as econometric, queuing-based, or simulations. Most of these

models operate for an individual time period, using average revenue and operating costs

across several flights for all airlines.

This research proposes a system that implements the basic econometric model of conges-

tion pricing embedded within an optimization model that uses actual recorded revenue and

operating costs of airlines. For each time period, this system determines an airline’s indi-

vidual flight decisions: (i) paying the price announced and operating the flight, (ii) delaying

the flight to a less congested time period, or (iii) cancelling the flight, thereby optimizing

the allocation across multiple time periods. The research provides a new mechanism for

calculating the airline costs of delay as well as a mechanism for setting the congestion prices.

The results of imposing congestion prices are compared to other suggested rationing

schemes to see the impact on airline costs, passenger throughput and passenger delay:

ration-by-schedule (currently used by Air Traffic Management) and ration-by-distance. The

analysis demonstrates that the proposed congestion pricing method shows improved perfor-

mance with respect to passenger statistics (both throughput and delay), however it is more

costly to airlines since they have to pay for the runway access during congested periods.



Chapter 1: Introduction

The airline industry in the United States serves as one of the major transportation net-

works for travel of greater than 250 miles and therefore has a major impact on the coun-

try’s economy. It is the fastest and most connected network (compared to other means of

transportation) transporting both people and cargo. FAA Aerospace Forecasts Fiscal Years

2011-2031 [FAA, 2011] reported that in the year 2010, the industry operated 51.2 million

flights on 7,096 aircrafts; transporting 712.6 million passengers, 35.9 billion Revenue Ton

Miles1 (RTM) of cargo between both domestic and international airports. It further pre-

dicted that by the year 2031, the number of passengers per year in the U.S. may grow to

1.3 billion. This suggests the importance of air transportation to the U.S. economy.

The demand for additional routes, new airports and increased capacity in terms of

runways, gates and baggage facilities at existing airports, is increasing far faster than the

resources to satisfy this growth. Several studies have identified that it is airport flight

capacity rather than airspace capacity that is the choke point.

According to the Operational Evolution Plan (OEP) [FAA, 2005b], there are 35 major

airports that account for about 73% of commercial passengers enplanements in this country.

In 2005, 23 of these airports exceeded their flight capacity and others will by the end of

2020. These congested airports cause delays in the system, and incur costs to the airlines,

airports, and the overall economy. For instance, according to [Ball et al., 2010], in 2007,

delays cost $32 billion to lost economic productivity.

Since airports have been identified as the choke point, all flights using these airports (as

an origin, a destination, or a stopover point) result in delays that propagate throughout the

nationwide network. As there is little air traffic at night, the delays are absorbed during

the lightly scheduled nighttime hours, only to begin again the following morning.

1Revenue Ton Mile = One ton of revenue cargo transported one mile.
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Although the ideal solution to the congestion problems at the airports would be to

expand the airport capacity, this solution is often not viable. There is little room to expand

at many of these airports. For example, at airports like LaGuardia, which has averaged over

70 minute delays on most afternoons in Summer 2007 [Wang et al., 2008], runway capacity

is limited by the geographical location of the airport. Even if capacity expansion is feasible,

the time to build a runway averages between fifteen and thirty years from the time of the

first feasibility study to the completion of a runway. Thus, the DOT is forced to consider

solutions other than capacity increases.

The DOT would like to be presented with alternative solutions that accomplish a number

of goals simultaneously:

• assure that the valuable runway access is used efficiently.

• assure that all airlines, including new entrants, have the opportunity to enter the

market. New entrants are likely to ensure adequate competition within airlines and

thereby reasonable airfares and quality of service.

• ensure that any congestion management plan is perceived as fair to all stakeholders.

Even for a few airports, LGA, EWR, JFK, DCA and ORD, where DOT announced the

use of “slot controls” to limit the number of flights that can be scheduled to land or depart,

the capacity was determined by assuming “perfect weather” day. Thus, the allocation does

not take into account the likelihood of any weather-related incidents that would reduce the

overall flight capacity, nor does the current allocation consider that stochastic perturbations

in the landing and takeoff of aircrafts may result in inefficient use of runway capacity. Robert

Sturgell in 2008, acting as FAA administrator at that time, stated that “airlines have to

be more realistic about scheduled operations at U.S. airports. Schedules predicated on a

bright sunny day every day are just flat out impractical ... and they create havoc anytime

when weather hits.” He notes that the amount of operations an airport can handle has to

be the starting point of any conversation about congestion. “The flight cap at LaGuardia

is currently too high,” Sturgell stated[Field, 2008].
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1.1 Research Objective

Currently, on “day of operations” whenever there is imbalance, due to either overscheduling

or reduced capacity, between runway capacity and arriving flights’, a Ground Delay Program

(GDP) is imposed. When a GDP is imposed, flights arrival times are rationed according to

their schedule (Ration-by-Schedule) and airlines are given the opportunity to swap flights

within their allocation. In this scheme, some more valuable flights may be delayed longer

than other less valued flights when an airline has fewer flights to use as swaps. These

delayed flights might result in a serious disruption of the airline’s network, hence, it might

be economically efficient for the airline to avoid delays by gaining access at a cost (i.e., a

fee) to slots closer to the scheduled arrival time. Similarly, low-cost carriers might incur

undue hardships due to the fact that they have tighter turnaround times and therefore, are

more likely to see network-wide disruption for relatively short delays. Additionally, regional

carriers also might be penalized since they have little control over their own schedules, as

they generally work as a subsidiary airline for one or more mainline carriers that have the

authority to determine which of these flights are cancelled, delayed or allowed to depart on

time.

A better approach would be to base the allocation on “economic efficiency”, i.e., re-

sources are allocated to those who value them the most [Varian, 2003]. Two major market-

based allocation methods for scarce resources based on economic efficiency are “auctions”

and “congestion pricing”. In auctions, the quantity of goods (runway capacity, in this case)

is set and users determine the price. In contrast, in a congestion-pricing setting, the price

is set a priori and the quantity is determined based on how many are willing to pay the

announced price. Ideally, both will lead to the same equilibrium point. However, in the

situation of day of operations congestion, where decisions are to be made in as little as

fifteen minutes prior to the departure time of the flight, the auction mechanism needs to be

simple enough to determine the price and the winners in a very short period of time. Given

the fact that the airline has to make many decisions within this fifteen-minute period, it

may be difficult to design a mechanism that is appropriate for this allocation problem.

3



This research is concerned with the question of how one could set a congestion price for

a process that is as complicated and dynamic as runway access. The literature has provided

a general framework for setting congestion prices, but no such mechanism has taken into

account the likely actions of an airline as it relates to each flight and the multiple decisions

that can be made about each flight: namely, should an airline pay the toll immediately

and be sure of an on-time departure, postpone the decision and take a short delay in order

to pay a lower toll or possibly no toll in a future period, or cancel the flight altogether?

The airline must be given sufficient information to make such decisions for each flight in

its schedule and the algorithm must be capable of adjusting future prices based on the

responses made in a given period. Thus, congestion pricing for airlines is similar to the

dynamic pricing used on roadways, with one important difference: roadways have a very

large number of independent decision makers whereas, for runway access to a given airport,

there may be only a handful of decision makers (the airlines) who must make multiple

interrelated decisions.

The objective of this research is to develop a methodology for the setting of congestion

prices that could be used by Air Traffic Flow Management (ATFM). One wishes to find

prices such that the airlines will limit the number of flights that pay the toll in the period

to be approximately equal to the capacity of the runway at that period. Thus, one wants to

set the price such that the airlines’ response to the congestion price is to have demand and

supply approximately equal. The algorithms employed must be both fast and responsive

enough in the setting of these prices such that when new weather conditions are announced

or when airlines do not respond as expected, one can set the next period’s prices to force

better compliance between supply and demand. The congestion prices must consider, (i)

the overall profitability of given flights, (ii) the impact that given flights have on the overall

schedule at the airport, and (iii) the competition of a given flight among all flights of all

airlines.
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1.2 Contribution

This research contributes to the current literature in the following ways:

• This research provides an automated system to calculate congestion prices based on

the basic economic theory described in the literature. This research extends prior

attempts at setting congestion pricing by considering: i) the profitability of each

flight rather than using average ticket prices for all flights of a given aircraft size,

ii) uses detailed cost-of-delay models to evaluate the differences in delay based on

length of delay, size of aircraft and where the delay might be taken (gate, taxi-way or

airborne), iii) considers end-of-day conditions, iv) considers the cost of cancellation

when evaluating whether it is better to delay a flight or cancel that flight, and v)

considers whether a delay in the given flight is likely to propagate delays in the system

because of the inability of that flight to make a connection to a follow-on flight.

This research is unique in its incorporation of each of these activities in the pricing

considerations. It is also unique in that it allows the decisions to be based on whether

it might be cheaper for an airline to incur a delay in order to reduce its overall costs by

waiting and paying a lower congestion price for some subsequent time period. Thus,

this research considers a multi-period decision-making process by each airline for each

flight.

• This research presents a new methodology for calculating the costs of delay for any

individual flight. The model is based on a EuroControl model of delay, but has been

expanded to be useful for any aircraft type and also usable when the underlying

components of the EuroControl model (e.g., fuel, crew, maintenance, or other opera-

tional costs) have been changed. The original model did not allow such modifications

and therefore, could not be used when an underlying component (such as fuel costs)

changed dramatically.

• The research performs a comparative analysis of congestion pricing to two alternative
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non-economic approaches to rationing runway capacity: Ration-by-Schedule (RBS)

and Ration-by-Distance (RBD). The first of these (RBS) is currently being used by

Air Traffic Flow Management (ATFM) for allocating runway capacity while the second

(RBD) is one being promoted as being better for both the airlines and for passengers

as it reduces the total expected flight delay [Hoffman et al., 2007] and correspondingly,

the total passenger delay.

With respect to RBS, the new methodology results in reducing delays for both flights

and passengers, increasing passenger throughput and improving ontime statistics.

Compared to RBD, the congestion pricing method is better in terms of flight and

passenger throughput (in most cases), worse in terms of total flight delay but still

better in terms of passenger delay. However, in terms of profit, the new approach

might cost up to 15% of total airline profit compared to other approaches during ex-

treme congestion periods. However, even in July 2007, when the highest congestion

ever recorded occurred, the number of such extreme congestion periods was relatively

few. Therefore, this new approach has the potential to improve systems performance

by forcing airlines to pay for the congestion they impose on the system.

Questions that this research attempts to answer include:

• Can a congestion pricing approach be derived which is consistent with economic theory

and with airline practice and is therefore likely to result in economically efficient

outcomes? Are there issues unique to the airline network that require consideration

when designing a congestion pricing model? Can such characteristics be included in

the pricing mechanism?

• Given a congestion pricing mechanism, is the methodology computationally capable

of obtaining the pricing in the short time available?

• How much would congestion pricing cost the airlines? Would congestion pricing cost

the airlines less than the current weight-based landing fees? Would congestion prices

vary significantly among airports?
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• Is the congestion pricing approach equitable across all airlines and all aircrafts, or is

there a certain subgroup to which it is more favorable?

• In what regard does the congestion pricing approach work better than the other

allocation approaches of Ration-by-Schedule (RBS) and Ration-by-Distance (RBD)?

What stakeholders would benefit from using the congestion pricing methodology?

1.3 Organization

This dissertation is organized as follows: Chapter 2 provides a literature search on the eco-

nomics of congestion pricing, the alternative approaches for calculating such pricing and the

application of congestion pricing to the airline runway allocation problem. It also provides

a discussion related to the current system’s allocation approach and its issues. It provides

a discussion of other alternative approaches for allocating resources in air transportation

that have been proposed in the recent literature. An illustrative example is also provided

which is later used to illustrate how the proposed methodology works. Chapter 3 discusses

in detail the proposed cost of delay model together with a sensitivity analysis of the cost of

delay model. Chapter 4 describes the congestion pricing model (CPM), its components, the

theoretical justification and an illustration of how it works. Chapter 5 provides a compari-

son of the congestion pricing model relative to the Ration-by-Schedule (RBS) approach and

the Ration-by-Distance (RBD) approach, and also provides details about the dataset used

to perform the comparison. Chapter 6 provides the results of these experiments. Chapter

7 provides general conclusions and suggestions for future work in this area.
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Chapter 2: Literature Review

This dissertation describes a mechanism to calculate congestion prices that would apply

during an announced Ground Delay Program (GDP). This chapter begins with a discus-

sion of economic principles that relate to handling congestion in general. It highlights the

economic literature that addresses how to design pricing mechanisms to ensure that scarce

resources are put to their best uses. It continues the discussion with a brief introduction to

the general economic theory of congestion pricing and then provides historical proposals for

its use in handling airspace congestion (Section 2.1). Next, in Section 2.2 the FAA’s current

approach to handling congestion when it occurs either on runways or en-route is described.

This approach is known as “Cooperative Decision Making” (CDM). Section 2.3 then de-

scribes some of the suggested improvements to CDM as well as a few alternatives that would

replace CDM completely. Section 2.4 describes in detail one of the simulators built recently

that analyzes the impact of different rationing rules during a GDP. The last section (2.5)

provides a short discussion of the chapter and identifies the reasons for reexamining the

current ground delay process methodology.

The chapter begins with a discussion of the economic principles that relate to handling

congestion in general. Since the economic efficiency goal is to put scarce resources to their

best use, a discussion of general market mechanisms that aim to accomplish that goal is

provided. Next the chapter proceeds to discuss how such designs might be used in designing

a day of flight market that allocates scarce airspace and runway capacity. Some of the

insights from the literature on market design are highlighted that may have application in

designing a day of flight market to allocate scarce airspace capacity.

[Roth, 2007] has outlined the key features of design that result in efficient and stable

markets. The term “efficient” means that the goods are allocated to those that value

them the most. The term “stable” means that no coalition of buyers could renege on the
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outcome of the mechanism and negotiate privately with the seller in a way that would make

the coalition of buyers and the seller better off. In the present assignment, an important

question to address is whether a good final allocation of air space capacity can be developed

using a day of flight market when both demand and capacity are subject to stochastic

weather.

There are two main mechanisms for market-based allocation methods for scarce re-

sources. One is to use auctions and the other is congestion pricing. Auctions have been

successfully used for the allocation of goods and services in an efficient manner whenever:

• One can assure that the market is sufficiently “thick,” i.e., it can attach a sufficient

number of participants so that there is competition for the goods being offered.

• There is sufficient time to make considered decisions. In the air congestion context,

this means that the mechanisms allows the users sufficient time to be able to evaluate

the value of any alternative decision.

• Straightforward responses are encouraged, i.e., when users bid their true values rather

than attempting to bid based on what they perceive the asset’s value is to someone

else.

• Strategic behavior is discouraged (gaming and collusion).

In the situation of day of operation congestion, the issues of participation are not a

concern since access to the airspace is controlled by the federal government and all must

participate to gain access. However, if a market is to operate on the day of flight, there may

be little time to create an auction mechanism that allows the market to close in a timely

fashion. Predicting the value of the entity may be difficult given the stochastic nature

of weather, and it may be hard to define the actual item being auctioned in terms of an

exact departure and/or arrival time. Similarly, since a single airline will need to be bidding

on multiple access rights with both substitutable and complementary characteristics (some

flight delays can be substituted for others at equivalent costs, while others produce network
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effects that magnify delays), it may be difficult to provide good valuations to the auction

without the process being very complicated or difficult to close quickly.

Thus, it is not clear that an auction mechanism can be defined that satisfies Roth’s crite-

ria for an economically efficient result. Therefore, the alternative market-based mechanism

is considered, i.e., congestion pricing.

One can consider an auction to be a quantity-based market mechanism. That is, the

regulator sets the quantity available at any given time period and the airlines would set the

price through an auction. An alternative to a quantity-based system is a price-based system

whereby the regulator sets the price for access and the airlines would respond by indicating

if they are willing to pay that price. Thus, it would be incumbent upon the regulator to

appropriately set the price so that the airlines response would closely match the capacity

of the system. This dissertation will discuss a mechanism for setting such prices. Following

are the theoretical issues with setting such prices.

The idea of how to price transportation is not new. French civil engineer, Jules Dupuit in

an article published in 1844 [Dupuit, 1844], argued that one should determine the optimum

toll for a bridge based on marginal utility. [Pigou, 1920] furthered this concept by making

the distinction between private and social marginal products and costs. He originated the

idea of externalities, i.e., costs imposed or benefits conferred on others that are not taken

into account by the person taking the action. He argued that the existence of externalities is

sufficient justification for government intervention. He proposed that the government should

impose taxes on negative externalities (e.g., overuse of public services) and should reward

positive externalities (e.g., the government should provide support to education because

individuals do not necessarily see the societal benefits of such investments). [Knight, 1924]

argued that privately owned, competitive roads would result in their optimal use and optimal

investment, since market forces would provide the pricing signals necessary for optimal use.

William Vickrey, winner of the Nobel Prize for Economics in 1996, proposed in 1951

that subway systems and road networks should impose fares that increase in peak times

and in high-traffic areas. He argued that time-of-day pricing could better balance supply
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and demand. Such pricing would encourage the use of alternative modes of transportation,

such as car pools and public transportation and would actually increase the throughput

on the tolled highways since congestion reduces the overall throughput. Vickrey argued

that congestion pricing allocates the scarce resource based on an efficiency principal —the

goods are allocated to those that value them the most. In addition, pricing plays two other

important purposes: it provides information about the areas that most require capacity

expansion and it provides resources for such expansion.

In a seminal work, [Vickrey, 1969] created a bottleneck congestion model. He defined a

bottleneck as, “one where a relatively short route segment has a fixed capacity substantially

smaller relative to traffic demand than that of preceding or succeeding segments.” Due to

such short segments in higher demand periods, congestion accumulates and delays increase.

Based on evaluating the cost of time waiting in queues versus the cost of waiting at the origin,

he describes an equilibrium point. Applying tolls equal to this equilibrium point, some users

will shift to alternative periods and will arrive either earlier or later to the congested location

within the network. Thus, the amount of toll charged can be approximated to the value

of one’s time relative to the queue. In addition to the toll amount, he also estimates the

revenue generated by applying tolls and compares it with cost of capacity expansion and

concludes that congestion pricing can be efficient and can also help generate revenues for

capacity expansion.

2.1 Congestion Pricing

2.1.1 A General Congestion Pricing Concept

Congestion pricing is one approach that the government can use to alleviate some types of

congestion. The idea is to charge a toll to users for the use of scarce resource (i.e., road

segment, airspace, energy) such that, as a result, resources are assigned to (used by) users

that value it the most and (if priced correctly) social welfare is maximized. An additional

advantage is that it allows opportunities to generate revenue in order to increase the scarce
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Figure 2.1: Theory for Congestion Pricing

resource where capacity is most needed. The fundamental principle behind the theory of

congestion pricing is that, one must impose a congestion toll on each user which is equal to

the external cost that the user imposes on the system as a whole, [de Neufville and Odoni,

2003]. Economists refer to this as forcing users to “internalize external costs.” The rationale

is simple: users who are willing to pay the congestion price (compensate for the external

cost they impose on the society) must be achieving revenue that exceeds the toll, thereby

increasing total economic welfare. Those who cannot pay the congestion price, should not

gain access since they do not obtain sufficient economic revenue to overcome the external

cost they impose on the society by using the facility.

Congestion pricing therefore forces the optimal use of the facility by employing the

toll equal to the external cost associated with an additional (marginal) user. Figure 2.1

describes this congestion price in the context of supply and demand. PP and QP define

the price and quantity respectively when no external delay cost is assigned. PT and QT

define the price and quantity when external delay cost has been added (price including the

congestion toll). The line segment MB defines the marginal benefit. Curve “Private MC”

(Marginal Cost) defines the additional user cost incurred by an individual user (“internal

delay cost”). Curve “Social MC” (Marginal Cost) is the expected marginal cost incurred by
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an individual user provided they also take into account their respective external costs. The

difference between these curves (“Private MC” and “Social MC”) at each level of marginal

benefit (MB) is equal to the external delay cost generated by an additional user. The blue

area identifies the cumulative congestion toll that needs to be charged across all the users

in order to optimally use the facility at that quantity level.

In practice, however, it may be difficult to apply this theoretical congestion pricing

theory to the airspace congestion problem. Mainly, it may be difficult to:

• accurately estimate the marginal external costs at any given level of demand. This

may be especially true in an oligopolistic setting where there are only a few players

determining much of the demand.

• observe congestion pricing effects on elasticity since the public cannot observe how

the fees impact the prices charged.

• determine the amount of the congestion fee that will lead to an equilibrium point given

the current approach of airlines to take short-term losses in the hope of obtaining

greater market share and future market gains.

• accomplish politically, since the impact of congestion pricing is likely to be higher

costs for certain segments of the airline industry, specifically general aviation and the

regional carriers.

2.1.2 General Congestion Pricing Idea

In addition, some economists maintain that congestion reflects an efficient distribution of

resources. [Mayer and Sinai, 2003] argue that the network benefits of an airline’s hub-

and-spoke network exceed the self-imposed delay costs resulting from flight bank-related

congestion, and that if the airlines are willing to incur these costs, then they should not be

eliminated.

[Czerny, 2006] argues that there is demand complementarity for airport capacity because

of the network character of the airline industry. Since the regulator does not have perfect

13



information of the social costs and benefits of airline operations, it will not be able to

efficiently set congestion prices and the outcome will be lower social welfare than a direct

slot allocation system. However, as Mayer and Sinai state, congestion pricing could be an

appropriate solution at non-hub airports with constant levels of delay throughout the day

[Mayer and Sinai, 2003].

Daniel is the economist leading the argument that congestion pricing would be more

effective than auctions (see [Daniel, 1995, Daniel and Pahwa, 2000, Daniel and Harback,

2008]). He argues that it is impossible to set the quantity of slots to be auctioned at an

optimal level because both demand and capacity are stochastic. In other words, they are

subject to random variation primarily due to weather. Therefore, setting a fixed quantity

of slots to be auctioned is ineffective because some aircrafts will arrive later and some slots

will go unused; when the delayed aircrafts arrive, demand for slots will exceed supply. The

quantity of slots could be set lower, but that would result in unused capacity at certain

times. On the other hand, congestion prices can be set dynamically and the airlines can

respond on an as-needed basis. That is, they do not need to decide whether or not to accept

the price until the time of takeoff.

A major debate in the congestion pricing literature is whether users internalize self-

imposed delay. Brueckner and others believe that users internalize self-imposed delay and

thus congestion prices should be adjusted to reflect this internalized delay (see [Brueckner,

2002a,Brueckner, 2002b,Brueckner and Van Dender, 2008]). He uses both symmetric and

asymmetric models of carrier airport flight shares to demonstrate that congestion pricing

systems based on internalization are optimal. Atomistic congestion charges are not efficient

because airlines are overcharged for delay that they have already internalized.

Daniel and others believe that users do not internalize self-imposed delay and thus con-

gestion prices should be set equal to all delay costs. [Daniel and Harback, 2008,Daniel and

Harback, 2009] evaluated published papers that claimed that users internalize delays. They

conclude that the models used in these papers do not produce evidence of internalization
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when evaluated using better quality data and more precise definitions of delays. They be-

lieve that users behave “atomistically” because they anticipate the behavior of competitors;

i.e., they assume that if they reduce flights during peak periods, then competitors will re-

place those flights with their own. Therefore, a congestion pricing system must assume that

users behave atomistically to achieve economic efficiency. [Rupp, 2009] also proved with

empirical evidence, using data from 1995 to 2004, that airlines do not internalize cost.

Morrison and Winston empirically address the internalization debate [Morrison et al.,

1989]. They agree with the fundamental theoretical insight concerning internalization, but

question how important it is in the real world. They estimate the net benefits (welfare

effects) of optimal tolls taking into account, internalization of their own congestion costs

and then recalculating the welfare effects assuming tolls are set in an atomistic setting.

They find that 91% of the net benefits of optimal tolls can be realized with atomistic tolls.

They therefore suggest that internalization be ignored for policy purposes.

Despite the debate over whether users internalize self-imposed delay, most economists

generally agree that a congestion pricing system could improve economic efficiency by forcing

users to internalize delay imposed on other users. However, some economists note that

congestion pricing systems could be ineffective because users could manipulate the posted

congestion charges. [Brueckner and Verhoef, 2010].

[Johnson and Savage, 2006] calculate a congestion price based on data from Chicago

O’Hare Airport. They conclude that the current airport departure weight-based fees are

inefficient because airlines do not consider the costs imposed on other flights and because the

charges imposed favor smaller aircrafts even though they use the same amount of runway

capacity. Their approach computed congestion fees based on departure queue and the

airline’s market share. A companion paper [Ashley and Savage, 2010] computes congestion

prices for Chicago O’Hare airport using the same data, but based on arrival queues instead

of departures. They find that prices based on arrival queues are about a fifth of the prices

based on departure queues computed earlier [Johnson and Savage, 2006].

Similarly, [Daniel and Pahwa, 2000] compared three different congestion pricing schemes
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and concluded that the current weight-based fee system is inefficient compared to any of

the congestion pricing schemes. The paper examines approaches based on an econometric

model [Morrison, 1983,Morrison et al., 1989], deterministic queue bottleneck congestion

[Vickrey, 1969,Arnott et al., 1990] and stochastic queuing model embedding a bottleneck

congestion model within the queue [Daniel, 1995] (see below for more on these approaches).

Another question debated in the literature is what mechanism to use to set the con-

gestion prices. Although the theory of congestion pricing is mainly developed and applied

for the management of road use,1 researchers have applied such road pricing models to

airspace congestion (see [Levine, 1969, Carlin and Park, 1970, Morrison, 1983, Morrison

et al., 1989,Oum and Zhang, 1990]). There is a fundamental difference between road pric-

ing and airspace pricing, however: while road users can be considered atomistic, with each

user accounting for a tiny share of the total traffic, airlines must be viewed as nonatomistic

given that one or two carriers dominate most major congested airports [Brueckner, 2002b].

2.1.3 Theoretical Congestion Pricing Models

Congestion pricing has not been implemented at any U.S. airport to date although proposals

for its use and mechanisms for calculating the appropriate prices exist. [Schank, 2005]

describes airport cases where so-called “congestion pricing” was implemented. However, he

argues that neither of these cases had effective theory to begin with and had potential flaws

in practice.

This section presents a short overview of this literature. Models that simulate congested

transportation are divided into three different categories, namely: econometric models like

[Carlin and Park, 1970,Morrison et al., 1989,Brueckner, 2002a,Verhoef, 2008], bottleneck

models with simple deterministic queues like [Vickrey, 1969,Arnott et al., 1990] and queuing-

theoretic models like [Koopman, 1972]. Much of the original queuing work on airport

congestion [Koopman, 1972] was used to determine the amount of delay, waiting times,

etc., but not concerned with issues of cost of delays or pricing models to reduce these

1For a brief report, see [GAO, 2003].
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delays.

[Daniel, 1995] presented a stochastic queuing model embedded within the bottleneck

congestion that describes a theoretical methodology for determining congestion prices.

Basic Econometric Model

All the approaches that use econometric models (for e.g. [Morrison et al., 1989,Brueckner,

2002b]) have similar basic structure:

For any single time period of the day, for any single carrier:

Profit =
∑

for all flights

((Price−OperatingCost) ∗ Flight− CongestionCost ∗ Flight)

In this model, CongestionCost is a function of the number of flights, and can be divided

into Congestion Cost incurred by the same carrier’s other flights and the congestion cost

incurred by other carriers’ flights in that time period.

Marginal Profit with respect to an extra flight, i.e. the cost associated with adding

another flight to the airlines schedule is:

MarginalProfit = Price−OperatingCost− CongestionCost(ownflights)

The congestion price should be set so that the cost of adding one more flight to an existing

schedule that is at the capacity of the system is exactly equal to the marginal profit of the

added flight.

Given available capacity of a runway at a particular time period is k, then setting the

congestion price equal to the marginal profit of the k+1st flight will assure that the flights

of highest value are allowed to fly. Thus the congestion price is set such that the k + 1st

flight has zero profit, i.e.

CongestionPrice(CP ) = Price−OperatingCost− CongestionCost(ownflights)
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For atomistic behavior, CongestionCost(ownflights) is dropped, i.e., carriers behaving

atomistically do not internalize the congestion cost generated by their own flights. There-

fore, the Congestion Price (CP) for any single time period is equal to the marginal cost of

the k + 1st flight which is equal to its marginal profit.

The first authors to use this model are Winston and Morrison.2 They differentiate be-

tween arrival(A) and departure(D) flights while calculating revenue, cost and congestion

cost; the flights were divided into six different classes denoted by “i”(international, cargo,

majors and nationals, commuter, other commercial [primarily regional] and general avia-

tion). The profit was calculated for an entire day, with 24 unique one-hour period denoted

by “t.” Airport maintenance cost (M) and runway costs are separate from operating cost

and are only functions of the number of flights in the system. The resulting toll becomes,

TolliA/Dt = MarginalCongestionCostA

+MarginalCongestionCostD

+MarginalCongestionCostM

Brueckner (along with other authors) has also used a similar econometric model in several

of his papers, both technical and published [Brueckner, 2002a,Brueckner, 2002b,Brueckner

and Van Dender, 2008]. His basic model assumes two airlines at any airport with different

cases of elasticity (perfect and imperfect)3 and substitutability (perfect, independent and

dependent).4 He computed the social optimum for each of these cases and then, based on

different airline behaviors and airline shares, calculated different tolls.

2[Morrison et al., 1989]
3Perfect elasticity refers to the case where no airlines have market power.
4Perfect substitutability means that the service provided by different airlines are perfect substitutes from

a passenger’s standpoint, independent substitutability refers to the case where one airline’s schedule has no
effect on another airline’s schedule, while dependent means that one airline’s schedule impacts a competitor’s
schedule.
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For perfect elasticity and substitutability, with an equal flight share with Cournot be-

havior5 of airlines, the toll is:

Toll =
1

2
MarginalCongestionDamage(MCD)

MarginalCongestionDamage(MCD) is the Marginal Congestion Cost for adding another

flight. MCD is equal to the atomistic tolls paid by airlines, if none of the airlines internalize

the cost generated by their own flights. In this case, both the airlines internalize half of the

congestion cost caused by the total flight share (i.e., 2 times the optimal flight share due

to symmetrical flight share) and with the toll equal to remaining congestion cost, the social

optimum is achieved. With Cournot behavior and different flight shares, the toll becomes,

Toll = (1− α)MCD where α = larger airline’s market share ( >
1

2
)

Another behavior among airlines is a Stackelberg Leader6 with Cournot follower. The toll

for such a combination is:

Toll(leader) =
1

2
(1 + λ)MCD where (

1

2
< λ < 1)

Toll(follower) =
1

2
MCD

With this combination, the tolls assessed to different airlines are different when attempting

to attain the social optimum. In such cases, the Stackelberg leader has to pay a higher toll

than its Cournot follower, since it does not internalize the entire cost of its other flights.

Another case studied occurs when, instead of a Cournot follower, there is a competitive

fringe that does not internalize any of its cost (probably since there are very few flights or

5Cournot behavior: The player considers other players’ quantities (flight share in this case) fixed while
making the strategy

6Stackelberg leader: The leader behaves with respect to its follower’s action (market leader).
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they are all operated by different airlines). The toll then becomes,

Toll = MCD

In this case, the Stackelberg leader doesn’t internalize any cost at all, while the fringe is

behaving atomistically, therefore, they all pay atomistic tolls.

For imperfect elasticity, Brueckner uses, instead of a constant price, a functional form

for passenger demand relative to price. Therefore, the social optimum changes with the

inclusion of market power. There cannot be any Cournot-behaving airlines and so, with

imperfect demand and perfect substitutability, the only case is of the Stackelberg leader

with a competitive fringe, thus the toll for such case is,

Toll = MCD

For imperfect substitutability, two cases are mentioned, the completely independent case,

where flights offered by different airlines are independent of each other. Again, for the

Stackelberg leader and the competitive fringe, the toll is,

Toll(leader) =
1

2
(1 + µ)MCD where (0 < µ < 1)

Toll(fringe) = MCD

For imperfect substitutability with some dependence between airlines flights, the toll for

the fringe remains the same, but the toll for the Stackelberg leader becomes,

Toll =
1

2
(1 + η)MCDwhere (0 < η < 1) and (η > µ)

The summary of these different cases based on different behaviors of airlines and different

economic conditions is that:

• a uniform toll for all airlines is not optimal in most of the cases.
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• internalization of congestion costs is advantageous to dominant carriers at hub air-

ports.

• different tolls for different airlines will have strong political opposition.

The above models do not consider network effects. [Brueckner, 2002b] also looks at network

effects and determines different tolls based on an airline’s share of total flights at an airport.

In [Verhoef, 2008], results are similar when considering a slightly different model that allowed

the imperfect elasticity of the airlines and considered the market power impact on the

equilibrium. Also, [Brueckner and Verhoef, 2010] identify the problem where atomistic tolls

are susceptible to manipulation once the airline knows the flight share of its competitor,

thereby presenting the idea of manipulable congestion tolls.

Betancor, Rus and Nombela also use similar models to compute tolls for airlines [Betan-

cor et al., 2003]. The additional constraint in their model is that an airport is also a profit

maximizing agent. Efforts made by airlines to increase punctuality and to reduce congestion

are incorporated. This model allows both slot price and slot quantity to be varied in order

to improve social welfare. They also looked at the cascading effects of congestion between

two connecting periods. They provide results of simulation using data from Madrid Air-

port, along with the intuitive result that the capacity expansion at the airport decreased

the marginal cost of using the facility.

Bottleneck Models

Vickrey’s bottleneck congestion model [Vickrey, 1969] is described earlier. This section de-

scribes one of the extensions of his model as reported by [Arnott et al., 1990]. N individuals

(aircrafts, in this case) travel between two endpoints while passing through a bottleneck

(runway) capable of serving s aircraft per time unit. Queues develop at the bottleneck

whenever traffic exceeds the service rate. Total travel time is T (t) = T f + T v(t), where T f

is the fixed component of the travel time, assumed to be zero. T v(t) is the variable time

waiting in queue, for an aircraft enqueued at time t. Waiting time in queue for an aircraft
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is the ratio of the length of the queue at time t and the service rate s; or T v(t) = D(t)
s ,

where D(t) is the length of queue at time t. If t∗ is the most preferred time and t̃ is the

time an aircraft joined the queue to achieve the preferred time, then t̃ = t∗ − T v(t̃). From

[Vickrey, 1969], the cost of the trip, C, is linear in travel time, specifically it is:

C = α(Queuetime) + β(TimeEarly) + γ(TimeLate)

where α, β and γ are the values of queuing-time cost, early-time cost and late-time cost

respectively. Let tq and tq′ be times when the queue begins and ends respectively. The

times are given by:

tq = t∗ − (
γ

β + γ
)(
N

s
)

tq′ = t∗ − (
β

β + γ
)(
N

s
)

t̃ = t∗ − (
βγ

α(β + γ)
)(
N

s
)

The departure rate from queue r(t) is:

r(t) =


s+ βs

α−β for t ∈ [tq, t̃),

s− γs
α+γ for t ∈ (t̃, tq′ ]

At the equilibrium point, since each aircraft has the same trip cost, total cost, TC,

no-toll equilibrium is:

TCe = (
βγ

β + γ
)(
N2

s
)
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and total travel cost, TTC, equals total delay cost, and SDC, equals TC/2. Letting a =

( βγ
(β+γ))(

N
s ), the socially optimal toll τ for an aircraft at t is :

τ =



0 for t < tq,

a− (t∗ − t)β for tq < t < t∗,

a− (t− t∗)β for t∗ < t < tq′ ,

0 for t > tq′ ,

A coarser toll of one step function is computed based on this socially optimal toll with the

premise that, most tolls are uniform over the day or are step functions. Coarser toll ρc

applied over the time interval [t+, t−] (also defined by the paper) is defined as:

ρc =
βγ

2(β + γ)
(
N

s
)

Some of the interesting results include:

• efficiency gains from computing the optimal congestion toll using bottle neck model

can be substantially greater than the efficiency gains achieved from a naive flow model

of congestion.

• a significant fraction of the gains can be achieved by using a single step coarse toll

which is easy to implement.

• total delay costs are of the same magnitude as total variable travel time costs, and

are important to include in the cost-benefit analysis.

Queuing Theory Models

[Daniel, 1995] uses two stochastic queues, one for arrival and one for departure, embed-

ded within a bottleneck model. Days are broken into banks of arriving/departing flights
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and a hub-and-spoke network is assumed at the airport. Each flight has a most preferred

arrival time τA and most preferred departure time τD with some layover and interchange-

encroachment costs; the former is the cost incurred if the flight is on the ground for longer

than scheduled time τD − τA(i.e., either arrived earlier than τA or departs later than τD)

while the latter is the cost incurred if the flight has less than scheduled time between its

arrival and departure preferred time τD − τA. Arrival of flights follows a Poisson distri-

bution with time dependent rates and the service time of the queue is deterministic. At

the bottleneck equilibrium, identical aircrafts have the same total expected cost of queu-

ing, layover and interchange-encroachment cost. Data from the first week of May 1990 at

Minneapolis-St.Paul Airport (MSP) was used for simulation purposes. Using this simula-

tion data and different statistical testing techniques, among different airline behavior models

(such as Atomistic, Stackelberg Dominant with Atomistic Fringe and Nash Dominant with

Atomistic Fringe,), the simulation results conclude that Atomistic/Stackelberg Dominant

behavior was observed at MSP airport.

Daniel further extended his model to include “elastic demand” as a result of congestion

fee as well as different aircraft operating time preferences and layover and queuing time

values [Daniel, 2001]. Elastic demand allows the change in composition of aircraft type in

traffic while different costs cause the sorting of aircrafts such that more costly (with respect

to layover and queuing time values) aircrafts will schedule closer to preferred times. For the

same data as used above, he showed that the dominant carrier (NorthWest in this case) will

still schedule close to the most preferred time while paying the daily average congestion fee

of around $295. Other major airlines will be willing to incur some delay and pay congestion

costs ranging around $206-$212, while the regional airlines incur more delays and thereby

pay lower congestion fees ranging from $64-$71, on average. General Aviation (GA) will pay

the least of all, around $28-$43 depending on demand elasticity. The heterogeneous costs

will force the GA to be farthest from the preferred time but paying the smallest amount of

congestion fee.

In [Daniel and Harback, 2009], using the original model (as described in [Daniel, 1995]),
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the authors present for each of 27 U.S. airports, the number of arrivals; the average weight-

based fee, average congestion fee, average delay with weight-based fee, average delay with

congestion-based fee, change in daily cost per operator, change in daily revenue and net

gain to airport. The estimates of the congestion fee are provided for the dominant carrier(s)

at their hub airport as well as for the other carriers at that airport. Congestion fees can be

as high as $2753 for other carriers and $2323 for Delta (dominant carrier) at Atlanta (ATL)

airport, to as low as $226-$201 at LaGuardia (LGA) airport.

[Janic and Stough, 2005] use a queuing-based using a diffusion approximation model to

illustrate the airport. In their approach, the airport is treated as a queue with congestion

only defined when the demand-capacity ratio is greater than one (in other words, there

are more flights than the current airport capacity can handle). They argue that the flights

should be charged for the entire congested period and the delays should be computed for

the whole congested period. A revenue model is used to calculate the additional flights’

revenue while the congestion cost is only considered effective if it compromises the expected

profitability of a new flight.7 They applied this approach to LGA using data from July 2001

and concluded that this type of model is more applicable to non-hub airports with many

airlines having a fairly equal share of flights. At such airports, two observations were more

prominent, namely: small regional flights affecting larger flights are eliminated and that

up-gauging will be stimulated. In the case of a hub airport, this model favors the dominant

carrier and compromises competition.

2.1.4 Simulations involving Congestion Pricing

Apart from the above mentioned theoretical approaches to congestion pricing, some recent

work has been done that supports the application of congestion pricing at U.S. airports.

Two such approaches follow:

7This is similar to the econometric model where the toll is effective only when it can keep the extra flight
out of the congested period.
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Congestion Pricing for New York airports

[Poole and Dachis, 2007] discussed some of the airlines’ concerns and their issues with

congestion pricing, namely:

• Airlines argue that pricing will be ineffective since congested airports are the busiest

airports in the U.S. Thus, there is no off-peak time nor are there alternative airports.

Therefore, the airlines will simply incur the prices. Up-gauging is also not a likely

outcome. Rather, the connections to smaller markets will disappear when congestion

costs are imposed. If the congestion price does not apply to all, i.e., there are special

carve-outs and exemptions, then there will be a greater distortion.

Poole and Dachis refute this argument by presenting the results of a simulation at

the three New York airports. They show that the current congestion was reduced

to acceptable levels. The results also show that no significant connections to smaller

markets were lost. There are no Essential Air Service(EAS) flights and a very small

General Aviation (GA) population at these New York airports that might be exempted

from the congestion pricing. However, they argue that GA should not be carved out

in any case.

• JFK and EWR are special cases since these airports are departure hubs for many

transatlantic flights and thereby have many connecting flights to smaller markets that

rely on these airports for international flights. Also, foreign carriers that are exempted

by bilateral agreements might gain advantage over national carriers.

Poole and Dachis argue that the congestion cost would be more favorable to foreign

carriers as opposed to the current weight-based fee. They also discussed ICAO policy

and bilateral agreements and concluded that congestion pricing can be legally applied

to these airports. So, potential exemption to international flights is also non-optimal.

• Congestion pricing would undercut needed capacity expansions and the revenue gen-

erated by the congestion cost will be invested in other projects rather than in capacity

expansion.
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Poole and Dachis suggested a “Plavin Lockbox,” whereby all the revenue generated

can only be used for capacity expansion.

• Congestion does not take place exclusively at airports, but also within the airspace.

This argues that the airports are not the only reason for the congestion, but that

airspace near New York airports is also part of the bottleneck generating congestion.

Poole and Dachis showed that at least at New York airports, airspace is only 1/3 of

the delay problem.

• The Levine Challenge [Levine, 2007] as described by Michael E. Levine, discusses the

preconditions for an effective pricing system for these airports, i.e., no exemptions to

congestion pricing, proper control of generated revenue and creation of congestion-

charge fund for capacity expansion. Without satisfying these conditions,he feels the

pricing will both fail and do economic damage.

Poole and Dachis showed a simulation based on the system that meets the Levine

Challenge. As Levine himself pointed out there is a need for “transparent and equi-

table pricing and efficient use of the funds generated” [Levine, 2007].

For La Guardia airport (LGA), Poole and Dachis used the NEXTOR simulation data

(described in the next section). For Kennedy (JFK) and Newark (EWR) airport, they pro-

vided a simple model to calculate congestion cost based on departure queues.

To estimate the congestion price, Poole and Dachis used a simple Pigovian framework of

using the difference between individual aircraft cost. They compared the cost of taxiing out

for that aircraft relative to the external marginal cost, that is, the cost of delays imposed

on other aircraft in the departing queue. The external congestion cost can be divided into

two types. The first external congestion cost is due to an aircraft in a queue increasing the

number of aircrafts in front of other aircrafts wishing to depart afterwards. Another is the

knock-on effect, that a longer queue implies larger number of planes affected by delays. An

optimal congestion price will be the one that will force the airline to pay for these external
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costs and thereby reduce the demand for the departure.

The average variable cost (AVC) of an aircraft in a departure queue is the combination

of both the operating cost of an aircraft and the time cost of passengers. For the simulation

discussed, an average departing aircraft at JFK was estimated to have a per minute queue

cost of $50. The load factor was found to be around 85% and the resulting per passenger

cost was estimated to be $0.52 per minute. This gives the delay cost per minute in case an

aircraft is delayed in the departing queue. What remains to be found is the relationship

between the number of aircrafts in the queue and the expected delay. A simple linear

regression method was used to estimate delay by time of day using historical data. The

minimum time an aircraft takes from gate to runway is defined to be 10th percentile of

taxi-out time for that day. Anything on top of that is considered to be delay. Based on

the simulation, throughout the day the congestion prices ranged from approximately $2000

during peak hours to $100 for night hours at JFK. The authors show that these prices were

sufficient to reduce the current congestion to acceptable levels [Dachis, 2007].

NEXTOR (National Center of Excellence for Aviation Operations Research)

Simulations

In November 2004, a human-in-the-loop simulation was conducted by the NEXTOR (Na-

tional Center of Excellence for Aviation Operations Research) at George Mason University.

This human-in-the-loop simulation studied alternative approaches to congestion manage-

ment. The simulation examines the effects of different congestion management methods on

a given (existing) schedule at LaGuardia Airport (LGA). This simulation was supported by

FAA and DOT, and had several research teams from different universities and the airline

industry involved.

[Donohue and Hoffman, 2007,Ball et al., 2007] discuss the simulation where the partic-

ipants were provided with policy decisions that related to alternative demand management

approaches. The participants were then asked to respond by changing their existing sched-

ules in response to the new policies. Representatives from the FAA, airlines and airport
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Figure 2.2: Mean average gauge of aircraft results from the simulation

operators were invited to participate in these simulations.

During the simulation, there were three sequences, for a total of five moves. The first

scenario used a baseline schedule of operations at LGA and placed into effect a “Passenger

Bill of Rights” rule that would force airlines to compensate passengers for flight delays.

The second scenario again started with the baseline schedule, but had the FAA provide

two rounds of administrative actions that tried to both reduce congestion and increase

competition. The third scenario again started with the baseline schedule, but imposed

two rounds of congestion pricing. The second round of the congestion pricing simulation

adjusted the congestion pricing used in the first round.

Figure 2.2 shows the result of the first simulation. As seen, congestion pricing rounds

resulted in a larger average gauge of aircrafts at LGA airport. Since in this scenario, any

airline could use the airport if willing to incur the congestion price, there was no need for

larger airlines to hold onto slots. Therefore, some inefficient flight legs were replaced by a

new airline’s more efficient flight legs. It is evident that these changes led to a more efficient

use of slot resources.

Another simulation was held in May 2005 at the University of Maryland. This simulation
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dealt with a general auction design and participants were given first hand experience of a

mock auction. The objective was not to obtain definitive data on specific outcomes, but

rather to teach the participants the rules of the auction and how the auction mechanism

would work. The details of this design are described in [Ball et al., 2007] and [Donohue and

Hoffman, 2007].

2.1.5 Congestion Prices

The following table, Table 2.1, provides a summary of some of the congestion prices (in

dollars) that are reported in the literature.

2.2 Current System

Currently, Air Traffic Flow Management (ATFM) deals with the case where there is an

imbalance between demand and capacity. It is an important instrument to keep the delays

on the ground rather than in the air to minimize disruption, thereby having the least

economic impact on the users and better utilizing the resources (airport and other air traffic

management resources). All of ATFM strategies employ three principal interventions:

• ground holding: delaying a flight’s takeoff at the departure airport for some specified

amount of time

• rerouting: changing some of the route of the flight from its departure to arrival airport

to manage the traffic flow

• metering: controlling the rate of flights at some spatial boundary (e.g. arriving at a

given air traffic control sector or airport) by adjusting space between aircrafts.

Some of the ATFM strategies include Ground Stops (GS), Airspace Flow Program (AFP),

Ground Delay Programs (GDP) and Miles-in-Trials (MIT).

• Ground Stop (GS) is a ground holding of an aircraft to avoid traffic at or around the
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departure airport. It is also to be invoked when there are severe weather conditions

(e.g., heavy storms) or high security threats.

• Miles (Minutes)-in-Trails (MIT) are used to control miles (minutes) required between

two aircrafts. The change in separation distance is used to control the flow rate of

aircrafts. MIT might propagate to flights hundreds of miles away from the airport.

• Airspace Flow Program (AFP) is a relatively new program to reroute flights away

from a constrained airspace caused by inclement weather.

• Ground Delay Program (GDP) is used to manage traffic flow at an arrival airport by

delaying flights at departure airports.

In the current system, when demand exceeds supply, a GDP is imposed. A description

of how GDP currently works is therefore presented.

2.2.1 Ground Delay Program (GDP)

The Ground Delay Program (GDP) is a short-term strategy to reduce air traffic congestion

at an airport by decreasing the rate of arriving flights according to the foreseen imbalance

between demand and capacity. GDPs have been implemented since 1981 and have been

deemed successful (along with some improvements such as Collaborative Decision Making

[CDM]) to date. The motivation behind GDPs is to convert the foreseen airborne delays

into safer and cheaper ground delays [Ball and Lulli, 2004].

While a GDP is in effect, airlines flying into the airport are assigned a delay computed by

a Ration-by-Schedule (RBS) approach. That is, each flight is ordered based on its published

arrival, thereby receiving a proportional delay based on their Official Airline Guide (OAG)

published, scheduled arrival time. Using this approach, flights at the beginning of the GDP

are assigned shorter delays compared to the ones towards the end of an announced delay

period. Alternative approaches of allocation other than RBS are discussed in [Manley,

2008].
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Once the RBS allocation is made, the airlines now “own” these slots for a given GDP

announced time period. Each airline impacted may choose to reorder their own flights in

this GDP ordering; they may also cancel flights. When a flight is cancelled, it results in a

schedule with holes in the ordering. A “Compression” algorithm is invoked to fill these holes

by moving flights up along the schedule with the added provision that the airline has the

right to insert some other flight into the schedule as needed (see Slot Credit Substitution

below for details). This incentivizes airlines to provide up-to-date information on their

flights’ status, since an early announcement of a cancellation allows an airline to obtain a

slot later in the day.

2.2.2 Collaborative Decision Making (CDM)

Since 1998, GDPs have been implemented under Collaborative Decision Making (CDM).

The idea of CDM is to increase information exchange between all the parties involved, such

as airlines, airports, the FAA and the air traffic controllers. This is done using a common

situational awareness system that allows operational problems to be solved in a timely and

coordinated manner [FAA, 2005a]. This, in turn, increases the efficiency and equity of

GDPs while ensuring that available perishable resources (arrival time slots) are utilized.

The basic premise is that “shared information and collaboration in planning and executing

ATFM initiatives benefits all ATM users as well as the ATM service provider” [Metron,

2000]. Following are some of the advantages of CDM based GDPs:

• CDM provides the overall picture to all the parties involved. Thus, an airline can see

the overall situation at the airport(s) and can plan its schedule accordingly.

• under CDM, information is shared instantly, e.g., any announced cancellation provides

a revised picture of the situation, thereby improving the GDP parameters.

• this coordination may allow a GDP to be cancelled before planned, due to the reduc-

tion in demand (removal of cancelled flights).
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• Under CDM, the airlines have a right to swap their slots among, not just their own,

but also with competitor’s flights. This way, fewer slots are wasted and airlines can

plan ahead to perform their operations efficiently.

Further details about CDM and its implementation can be found in [Manley, 2008,de Neufville

and Odoni, 2003].

2.2.3 Slot Credit Substitutions (SCS)

Slot Credit Substitutions (SCS) are a natural extension of the current system and were

implemented in May 2003. Under CDM, the airlines cancel and substitute their own flights

to better facilitate their overall schedule. However, only when an airline cancels a flight can

it make substitutions and the airlines would not see the consequences of this action until

executed. With the SCS paradigm, an airline gets a “conditional cancellation” opportunity.

That is, it announces that it is willing to give up a certain slot (by cancelling a flight) in

return for a later, desirable slot. The CDM paradigm takes care of these requests and then

matches the pairs of flights for potential substitution. This pairing is termed as “bridging”

in the SCS environment. An analysis by Metron Aviation [Wright, 2004] regarding SCS

benefits suggested that SCS requests produced around 3000 bridging opportunities with an

average savings of 20 minutes per bridging flight, resulting in a total of 120,000 minutes of

delay savings.

2.2.4 An Illustrative Example

Consider the example illustrated in Figure 2.3(a) that shows the original schedule at an

airport. Each cell represents a flight, defined by airline code (for example, UAL denotes

United Airlines8), aircraft code,9 along with its revenue. The X-axis indicates the scheduling

order (ascending) in which the flight plan was filed within the same time window. Y-axis

indicates different time windows. Flights are ordered from top to bottom and left to right.

8List of airlines code is provided in Appendix A.
9Full list provided in Appendix B.
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Figure 2.3: (a) Original schedule, (b) Ration by Ration-by-Schedule (RBS) allocation

The red line indicates the announced capacity for the time window. In this example, the

capacity is reduced to 3 per time window and a total of 3 time windows.10 Therefore, two

out of the first five flights will be rescheduled. Figure 2.3(b) shows what happens when

RBS is applied to the original schedule. All extra flights were cascaded to the later time

windows. Given the ordering, an airline might substitute one of its flights with another to

better accommodate its schedule, e.g., assuming that Delta (DAL) and Northwest (NWA)

are now a single airline, Delta might cancel its flight (DAL[B763,$50]) to use the slot for

Northwest flight (NWA[B752, $26,503]) since it is more profitable. In the current schedule,

three larger (and more profitable) flights are cancelled due to unavailability of slots. In

the later chapters, the same example will be discussed to illustrate how congestion pricing

might alter the allocation.

2.2.5 Issues with Current System

The idea of GDP was based on a concept of equity and fairness with RBS allocation being

the most fair among others. However, due to an imbalance in the share of flights at given

airports among different airlines, the current system favors a smaller group of larger airlines

since they have far more flexibility in the swapping of flights. Given the fact that flights

10In reality however, one can always reschedule a flight in the subsequent period.
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are not single entities, but rather part of a larger network and delays propagate into later

delays, the current system works well for an airline having many flights at a given airport,

but not as well for a carrier having only a few valuable flights at an airport dominated by

another carrier. In fact, due to different proportions of airlines’ shares in most cases, an

airline with a smaller share at any congested airport suffers the most compared to an airline

with a larger share of flights.

Another problem associated with the current system is that, because airlines care about

published online performance and because their associated regional carriers may be charged

with the delay statistics (rather than the major carrier that determined the delays), smaller

regional airlines may be susceptible to gaming from the larger airlines who transfer the large

carriers’ delays to the smaller carriers.

The RBS approach is considered fair and equitable only if there are no exemptions to

a group of flights. However, in the current system there are several exceptions to the rule.

Often when a GDP is invoked, it is tiered according to distance and only cities within a

given radius around the GDP airport are affected by it. All airborne flights are already

exempted as are many international flights. This results in favoring carriers with long hauls

and penalizes regional flights.

2.3 Alternative Approaches

Many alternative ideas have been considered in the literature to overcome the issues with

the current system. This section discusses a few of the newer approaches that either further

expand on the current system or replace it completely with alternative systems.

2.3.1 Slot Trading [Vossen and Ball, 2006]

[Vossen and Ball, 2006] further developed the concept of trading slots among airlines when

the Ground Delay Program (GDP) is in effect. Instead of simple rounds of substitutions and

cancellations after the initial allocation of slots using the Ration-by-Schedule (RBS), their
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research studied the consequences of allowing the airlines to trade slots among themselves

unconditionally (unlike Slot Credit Substitution or SCS). They interpret the Compression

algorithm as a way of slot trading between two airlines where an airline trades its earlier but

useable slot for a later slot with another airline that can use the earlier slot. Currently, this

algorithm only allows “one-for-one” trades. Vossen suggests a general model to perform “k-

for-n” trades initially while providing a practical implementation of a “two-for-two” trades

model. Airlines periodically submit a list of trade offers based on their preference while a

mediator decides (based on some decision rule) to accept some of these offers. The role of

mediator is modeled as an optimization model, while the decision rule can be considered

as the objective function of that optimization model. Different decision rules can be used.

The paper proposes a straightforward rule: i.e., the number of accepted offers. The airline’s

list of trade offers can be used to represent the airline decision-making model. Two models

used in the experiments are:

• maximizing the on-time performance for each airline by maximizing the number of

flights that are delayed at most by 15 minutes.

• minimizing the passenger delay costs (total or average) for each individual airline.

The experimental analysis was done using historical data from a set of GDPs at Boston

Logan Airport from January to April of 2001. Vossen concludes that using either airline

decision-making model, the slot trading method proposed shows promising results. In the

case of maximizing on-time performance, it reached theoretical bounds while in the case

of minimizing passenger delay cost model the results were significant, especially when a

step-wise function was used for delay costs.

2.3.2 Proportional Random Allocation (PRA)

Another idea proposed by both [Vossen, 2002] and [Pourtaklo and Ball, 2009, Pourtaklo

and Ball, 2010, Pourtaklo, 2010] is that of Proportional Random Allocation (PRA). The

idea for this allocation is simply that each flight has a share in all the slots that it can
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use (that is, all the slots after the scheduled time of the flight until the end of congested

period), therefore at each time slot, a flight is chosen with some probability (equal to 1/all

flights competing for that slot). A PRA share for that flight would be the summation of

its probabilities across all potential slots. A fair share FS of an airline would then be the

summation of the PRA share of all its flights. The PRA mechanism takes into account the

limited number of slots available and at the same time, also considers the larger share of

earlier flights as opposed to later flights. However, this approach is not used to allot slots

to flights; rather, it is used to compute “fair share” of airline (collection of flights). The

intuition for this allocation mechanism is that it meets the fundamental principles of equity.

2.3.3 Preference-Based Proportional Random Allocation (PBPRA)

As the title suggests, this approach [Pourtaklo and Ball, 2009,Pourtaklo, 2010] is based on

the PRA allocation described earlier. In addition to considering the fair share of an airline’s

slots, it also considers the airline’s preference regarding what slots it wants for what flights.

An ordered preference list of pairs of flights and slots is also provided for each airline. The

approach breaks the whole process into two steps:

• Step 1: Determine a fair share (FS) for each airline.

• Step 2: Allocate flights to slots in a manner consistent with the fair share determined

in Step 1.

For Step 1, the approach uses the PRA mechanism that give fair shares for all the airlines.

Step 2 is again divided into phases. For the first phase, Phase I, airlines are randomly chosen

in proportion to their fair share (more accurately, in proportion to a fractional part of their

fair share; this gives an airline with a fair share of less than 1 a chance to compete). Once

an airline is chosen, it is assigned the highest flight-to-slot assignment on its preference list

and its fractional share is set to 0. Phase I ends when there are no more fractional shares

for any airline. Phase II is ordered with respect to time, that is, for each earliest unassigned

slot, an airline proportional to its fair share is chosen and assigned the highest flight-to-slot
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assignment from its list of preference slots. The fair share of the airline is decreased by 1.

Continue assigning slots in the same manner until no airlines have anymore preferences.

Some experimental results were done with the self-generated preference list with the

underlying principle of reducing the marginal cost of delay. Again, these experiments were

done at a Flow Constrained Area (FCA) either an airspace or a ground airport. Different

capacity reductions were studied and the approach was compared along with the standard

RBS (Ration-by-Schedule) procedure currently used.

2.3.4 Dual Price Proportional Random Allocation (DB-PRA)

This approach [Pourtaklo and Ball, 2010,Pourtaklo, 2010] is a further extension to the pre-

viously described approach [Pourtaklo and Ball, 2009] and adds to the previously described

algorithms to allocate flights to slots. In the previous approach, all the slots were implicitly

assumed to be of equal value to the airlines. However, in reality, an airline may be willing

to lose more than a single slot at any other time in order to get a preferred slot. This

approach allows airlines to “pay more” for slots that they prefer. The approach identifies

two sets of airlines, one set that maintains on-time performance and hence is willing to pay

more for the preferred slots and receive fewer but more valuable slots, while the other set of

airlines can tolerate more delay than cancellations. Instead of using fair share proportions,

an additional parameter, PH , is used to determine the higher price an airline (or set of

airlines) is willing to pay in order to receive the preferred slot. The corresponding price

PL for the other set of airlines (that wish to tolerate delay over cancellation) is computed

using the Fair Share (FS) of airlines and PH . Similar to the previous approach, two steps

are defined and the DB-PRA algorithm is also divided into two phases; however, in this

case, Phase I deals with a set of airlines that value the slot by at least PH and all those

airlines are provided with their respective preferred slots. For rest of the remaining slots,

the PBPRA approach can be used for allocation with the value of all the slots being PL

and the fair share of all the airlines being 1/PL. The same data set as used in the previous

approach is being used with the same design of experiments. Due to the difference in slot
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values for different airlines, the approach concludes that this new approach helps airlines

better optimize their internal costs.

2.3.5 Credit Points

A similar approach to slot trading is credit points (similar to artificial currency), as sug-

gested in [Sheth and Gutierrez-Nolasco, 2008,Sheth and Gutierrez-Nolasco, 2009]. Although

this approach is mainly suggested for airspace congestion, it can be applied to ground delays

straightforwardly. The basic idea is to allow airlines to associate preferences to their flight

priorities and even route preferences during the filing process of the flight plan. Each day,

each airline is allocated a fixed number of credit points that they can use as they wish.

The flights with a higher number of credit points are given priority when assigning a route

(or in case of runway congestion, slots). Although there can be many different variations

regarding how many credit points to assign, when they would expire, etc., for the exper-

imental design purposes, the number of credit points provided to an airline is five times

the number of their flights for that day, with the credits expiring at the end of the day.

An airline typically assigns 0-10 credit points to each of its flight (and all of its routes)

based on its importance in the airline schedule. In case the preferred route (or slot) is not

allotted to the flight, the number of credit points associated to that route is given back to

the airline. In the experimental design, flights scheduled on August 24, 2005 between the

hours of 3:00 pm and 7:00 pm EDT are used. FACET11 was used for simulation purposes,

using the FAA’s ETMS data. The credit points assigned by the airlines to their flights was

done based on the distance a flight covers, so a flight that travels the greatest distance gets

more credit points with the presumption that longer distanced flights are more importance

to airlines. However, other factors to determine credit point distribution among flights and

routes, as well as experts’ knowledge can be used. A “swapping” mechanism to swap routes

between flights of different airlines is also used termed as “Negotiation.” The result showed

great improvement from historical scenarios and at the least, because of the credit points,

11For details on FACET, see [Bilimoria et al., 2001].
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the number of congested sectors during the studied time frame was zero (as opposed to

having an average of 2 congested sectors in the historical case). This approach concludes

that adding the user’s preference to the flight schedule can reduce delays and congestion

significantly; given a better strategy to assign credit points to flights (and routes), it might

further improve the overall performance of the air transportation system.

2.3.6 Permit Trading

A recent project funded by NASA dealt with the study of “Market Based Approaches

to Slot Auction and Enroute Airspace Management.” The goal was to study and analyze

different market mechanisms, their technical issues and hurdles to overcome in case a system

is selected for implementation. The project studied many market-based mechanisms in

detail and the combinations thereof and identified over 3000 various combinations. The

“Free-Pass Permit Concept” was finally chosen to be implemented and a human-in-the-loop

simulation was performed. Details are described by [Berardino et al., 2010e,Berardino et al.,

2010a,Berardino et al., 2010b,Berardino et al., 2010c,Berardino et al., 2010d]. Here, only

the concept of the free-pass permit is introduced. Again, although this approach deals with

air space congestion, it can be used for runway congestion.

The approach selected deals with the day of operations market, that is, how to deal with

the congestion at the airport that is generated on the day of operations. In this concept,

all the airlines are issued a number of free-pass permits which give an airline, “a right to

land at a given airport within a fifteen-minute time window without any GDP or AFP12

delays imposed.” Permits are time-of-day based and can be only used in that specific time

window for that given day at a given airport. The number of permits issued and how

they are distributed is decided by the service provider (such as FAA, ATFM, etc.). For the

simulation purposes, the total number of permits was set to 20% of the scheduled operations

in any given hour; the distribution was proportional to each airline’s share of flights in the

schedule. The participant is provided with basic flight information including the scheduled

12Air Space Flow Program.
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departure and arrival times, the aircraft type, the turnaround time and the future itinerary

of the aircraft, as well as the expected delay if the flight does not use a permit and the

cost of that delay. This is to ensure that a participant is fully aware of the outcome of

any and all of its potential decisions. Two different scenarios were used for the simulation,

specifically:

• Free Permits without Sales: All airline representatives (participants of the simulation)

are allowed to apply their free-pass permits to any of their capable flights. “Capable”

refers to the ability of the flight to reach the arriving airport safely within the time

frame of the permit.

• Free Permits with Sales: In this scenario, in addition to applying free-pass permits to

their own flights, an airline representative is allowed to sell its permits to other air-

lines for money, thereby introducing permit/slot trading. The airlines were therefore

provided with some cash at the start of the simulation.

Results of the simulations suggested that introducing the permits concept could further

improve the current system. It would be relatively easy to implement with the current

CDM paradigm.

2.4 GDP Rationing Rule Simulator(GDP-RRS)

[Manley, 2008], in her dissertation, designed a simulator GDP Rationing Rule Simulator

(GDP-RRS) to analyze the impact of different rationing rules available in the literature.

She then gathered performance metrics based on flight, passengers and fuel and perform

comparative analysis. For the Design of Experiments in this research, her simulator is

used to run alternative approaches like Ration-by-Schedule (RBS) and Ration-by-Distance

(RBD). Here, a list of different rationing schemes she implemented along with the overall

design of her simulator are described.
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2.4.1 Different Strategies

For Manley’s simulator, she analyzes the following different strategies:

• Ration-by-Schedule (RBS): As mentioned earlier, this assigns slots among flights based

on the order of their scheduled arrival times as published in Official Airline Guide

(OAG). It is a first-scheduled, first-served approach to assigning slots. Ties are broken

randomly in case of same scheduled arrival time. This approach is currently used by

the Air Transportation FlowManagement (ATFM) system when GDP is implemented.

• Ration-by-Passengers (RBPax): This strategy prioritizes flights by the number of

passengers on board. A flight with a larger number of passengers is preferred over

flight with a lesser number. In case of a tie, the RBS approach is used.

• Ration-by-Aircraft Size (RBAcSize): This strategy takes into account the categories

based on aircraft size, i.e. heavy, large and small. Priority is given to the heavy

aircraft first, then the large and finally the small category. In the case that two flights

belong to same class, RBS is used to order those.

• Ration-by-Distance (RBD): This strategy assigns slots to flights based on the distance

between the airports. Priority is given to long-haul flights over short-haul flights.

Manley uses Greater Circle Distance (GCD) to sort flights,13 unlike [Hoffman et al.,

2007] who use estimated enroute time for each of flights14. Ties are broken using RBS

approach.

• Ration-by-Fuel-Flow high precedence (RBFFhigh): This strategy uses the taxi fuel

burn rate to order the flights. Flights with higher taxi burn rates are given precedence.

The rationale is to avoid excess fuel burn. Ties are broken using RBS.

• Ration-by-Fuel-Flow low precedence (RBFFlow): This strategy again uses the taxi

fuel burn rate to order the flights, however, the preference is now given to flights with

13For the experiments in this research, the same distance parameter is used.
14A rationale might be to avoid the uncertainty due to route information, since an airline might report a

longer route in its flight plan but change it once airborne.
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low taxi fuel burn rates. The rationale behind this strategy is to incentivize airlines

to use fuel efficient aircrafts. Ties are again broken using the RBS approach.

2.4.2 Design of GDP-RRS

Here, a brief description of the design of Manley’s simulator is provided. Figure 2.4 discusses

the main steps of her simulator. The simulator starts with an initialization step that gathers

and calculates the basic information of the flight (e.g., PAX, Load Factor, scheduled time,

aircraft type, taxi fuel burn rate, etc.) and the GDP (the time of GDP as well as what tiers

are impacted). Next, it classifies the flights as ones impacted by the GDP and as those that

are exempted from the GDP. Exempted flights include international flights, already airborne

flights and pop-up flights, etc. A priority queue is generated based on this classification in

the next step. Based on the available capacity, slots are generated and times are assigned

to these slots in the next step. Finally, all flights are assigned initial slots, with exempted

flights first and then the rest of the flights are sorted with respect to the strategy used. The

substitution step allows airlines with cancelled flights to assign those empty slots to their

other flights. Preference can be given to either the earliest scheduled next flight or the flight

with more passengers. The next step, compression then tries to reallocate any slots that

were emptied due to cancellation and the substitution. Finally, the last step gathers all the

performance metrics. In case there are no cancelled flights,15 the simulator goes directly to

the last step of gathering statistics and skips the substitution and compression steps.

2.5 Summary

Starting with the brief introduction on the theory of congestion pricing, this chapter high-

lights some of the theoretical work done regarding the application of congestion pricing to

reduce congestion in transportation infrastructure. It also describes some of the recent work

done when applying congestion prices to airports. Human-in-the loop simulations suggest

that congestion pricing might work provided it is computed accurately and implemented

15Potential cancelled flights are predetermined in the data.
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PROCEDURE: GDP-RRS
1: Initialize
2: Classify Flights
3: Create Priority Queues
4: Create Slots
5: Assign slots to flights
6: Substitution
7: Compression
8: Gather statistics

Figure 2.4: Procedure for GDP-RRS simulator

efficiently. The latter part of the chapter describes the current implemented system that

deals with congestion at airports and its limitations. It also covers some of the more recent

and alternative approaches that are suggested in the literature. Some of these approaches

are extensions to the current system while others suggest replacing the current system with

a new mechanism for ordering flights during the GDP. A brief description and intuition

is provided for each of these approaches and references are provided therein. Finally, a

descriptive summary of recent work done is provided that includes a simulator for a few of

the rationing approaches studied currently in the GDP literature.
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Chapter 3: Cost of Delay

This chapter starts with a brief introduction (Section 3.1) of what is meant by delay costs

and the reasons for needing such calculations. Section 3.2 describes some of the earlier

approaches to computing the costs of delay, one of which is also the basis of the new model1

described in Section 3.3 of this chapter. Section 3.4 describes the results and observations

that were made when using this new model to compute the cost of delay. Section 3.5

discusses the sensitivity analysis done in order to further understand the model. The chapter

ends with summary section (section 3.6).

3.1 Introduction

The airline industry moves millions of passengers and tons of cargo annually. The Schumer

report estimated that in 2007, airport delays cost the economy about 40.7 billion dollars

[Schumer, 2008]. Disruptions in one part of the airspace impact the entire network as delays

propagate. It is estimated that almost 50% of the entire airspace delays are caused by delays

that originate at the New York/New Jersey/ Pennsylvania airports. This implies that delays

and their true costs are vital to airport and airspace management decision making.

Similarly, researchers are applying more holistic approaches to the feedback control

of the air transportation system [Donohue et al., 2008, Donohue and Hoffman, 2007, Ball

et al., 2007]. Many of these approaches rely on economic feedback [NextGen, 2008,Xiong,

2010, Rupp, 2005], including the cost of delays to the airlines. Therefore, understanding

the true cost of a delay is not only of interest to the airlines that incur these costs, but is

essential for air transportation management, policy and control.

1This research was done with other colleagues [Kara et al., 2010a,Ferguson et al., 2011] for the purpose
of evaluating the true cost of delay to airlines use in this congestion pricing model, as well in other studies
of airline behavior [Ferguson, 2011].
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In general a flight can be delayed due to several reasons. These are issues internal to

the airlines operations, mainly:

• mechanical problems with the aircraft.

• schedule disruption due to bad weather or air traffic management initiatives (Ground

Delay Programs [GDPs] or Air Flow Programs [AFPs]).

• misaligned crew/aircraft due to a previously delayed flight.

• scheduling multiple flights during a time period in excess of runway capacity at normal

weather day.

The two most significant causes of delay are (i) weather which can reduce the capacity of

both the airspace and the runways, and (ii) overscheduling that creates queues that further

reduce capacity on runways, taxiways and gates.

Based on weather forecasts and schedules, air traffic management estimates the resulting

reduction in capacity within various segments of the airspace and at a variety of airports.

It announces Ground Delay Programs (GDPs) that hold aircrafts at the departing airport,

in order to have the amount of flying aircrafts better match the capacity of the system. For

capacity reduction in air, Air Flow Programs (AFPs) are employed to suggest/announce

alternative routes for the flights. Holding an aircraft at a gate is both cheaper and safer

than an airborne hold, and allows the system to be better managed.

Finally, the delays previously described induce future delays in the system, because the

aircraft or crews may not arrive at their next assignment on time. Even when the crew

does arrive, they may not be able to work another flight because they have exceeded their

allowable working hours.

3.2 Background

Although much has been written on the impact of delay on both passengers and airline

costs, such costs are difficult to estimate because airlines consider their operating costs
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proprietary. Currently, there are two major approaches in the literature for computing

airline operating costs. The first is one often labelled as the “cost factor approach.” Here,

a linear combination of the costs associated with each segment of the flight is considered2

[JEC, 2008, Cook et al., 2004]. One can further segment delay costs into those directly

attributed to the flight and those attributed to propagated delay [ITA, 2008,Cook et al.,

2004]. Cook et. al [Cook et al., 2004] further differentiated the propagated delay between

primary delay caused by same airframe (i.e. rotational) or different airframe (i.e. non-

rotational).

The other option is that of the “aggregate cost approach” which is based upon the

relationship between operational costs and delays incurred. A simple version would be to

estimate the delay cost by taking the total operating cost and multiplying by the percent

of the flight time attributed to delay [Zou and Hansen, 2010].

The cost factor approach requires more detailed information about each phase of a flight

and its associated costs, while the aggregate cost approach, although not detailed, is easier

to calculate since the total operating cost is published for most flights.3

3.2.1 Aggregate Cost of Delay Model

[Zou and Hansen, 2010] introduced an aggregate cost approach where a direct empirical

basis is established by adding operational performance variables into airline cost models

and observing their effects on airline expenses. The BTS Ontime database is used to

construct operational performance metrics. Data is collected on a quarter-year basis for

aircraft type. Regression is applied to understand the relationship between the cost to

airlines and Revenue-Ton-Miles (RTM).

For operational performance, two sets of metrics have been developed. “Delay-buffer”

metrics consider two types of delays, delay against schedule and delay against schedule

buffer time of a flight. Thus, the first delay is against the scheduled time as announced in

2The EuroControl model, described later, and the proposed model both use cost factor approach.
3A more detailed comparison of these approaches is provided in [Zou and Hansen, 2010].
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the OAG4 schedule, and the other is the delay against the average of observed travel time

recorded historically. In order to characterize the delay against schedule, average positive

arrival delay per airline quarter has been chosen. A buffer for each flight is defined as the

“difference between the scheduled flight time and the 5th, 10th and 20th percentiles of all

observed travel time, for a given segment (directional), airline, and quarter.” The average

buffer is the average of the calculated buffer time over all the flights for each airline and

quarter. So, delay-buffer metrics consists of a total of six performance metrics, three for

each delay against the schedule and the delay against the schedule buffer.

The other set of metrics is “time-based” metrics. These metrics are based on three

time intervals, “Total Absorbed Time (TAT)”, “Scheduled Time” (S) and “Actual Time”

(A). TAT (denoted by Ttot) can then be divided into the following subsets, scheduled-active

time (S ∩ A), scheduled-non-active time (S ∩ ∼ A) and active-non-scheduled time (∼S

∩ A). Normalizing these intervals by the total absorbed time gives the probabilities PS∩A,

PS∩∼A and P∼S∩A respectively. The authors use Ttot, PS∩∼A and P∼S∩A as three operational

performance metrics.

The authors used regression to analyze the behavior between airline model inputs and

outputs. Due to its flexibility, they have used the translog functional form as a base model.

Revenue-ton-mile (RTM) is the only measure used to represent the aggregate output. Fol-

lowing are the inputs of the model:

• Cost input:

– Fuel price (fuel expenses per gallon)

– Labor price (per employee per quarter)

– Materials price (producer price index (PPI))

– Capital input (multiplying capital stock with the utilization rate, load factor is

used as a proxy)

• Performance input

4Official Airline Guide.
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Table 3.1: Airline delay cost estimates ($ billions), for 2007 [Zou and Hansen, 2010]

– Stage length (total distance flown/total number of departures flown)

– Points served by airline (extracted from BTS Ontime)

– Average positive delay by airline (available in BTS Ontime)

The data used was from BTS Ontime [BTS, 2007]. For accurate analysis, nine major

airlines were studied from the beginning of 1995 through the end of 2007.

Several different estimation results are provided in the paper [Zou and Hansen, 2010]

based on all the different parameters and performance metrics mentioned. The main results

are shown below.

Table 3.1 shows airline cost estimates in $ billions for 2007 using this approach with

different parameters. The first three rows refer to delay-based model. Among these three

rows, the first row shows the reduction in costs if the delay against schedule is eliminated

to zero (referred as “Delay against Schedule”) . The second row indicates the delay based

on the buffered schedule, i.e., the amount of padding that the airline inserted to have an on
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time arrival. The third row shows the reduction when both the delay against schedule and

the schedule buffer are eliminated (referred as “Total”).

Similarly, the next three rows refer to the time-based model. The fourth row (referred to

as Delay against Schedule) shows the reduction in cost if both PS∩∼A and P∼S∩A are reduced

to zero. The sixth row (referred as Total) further adds the effect of removing schedule buffer

as in delay-based model case, the fifth row (referred as “Buffer”) is then computed based

on the difference of the other two rows indicating reductions when only schedule buffer

is eliminated. The first half of the table report results for seven major airlines while US

Airways and American West were excluded due to the confounding of a merger. However,

the remaining table takes these airlines into account by extrapolating their costs based on

Available Seat Miles (ASM) as reported in BTS [BTS, 2007]. Buffer5 (Buffer10, Buffer20)

means that the schedule buffer is measured for the 5th(10th, 20th) percentile of the reported

time.

They concluded that:

• Delay and buffer impact airline costs significantly. One minute of increased delay

incurs approximately 0.6% increase in variable costs to an airline.

• A flight’s activity outside of the scheduled time interval impacts airline cost more

significantly as compared to changes within the scheduled time interval.

3.2.2 EuroControl (EC) Model

A report that evaluated the cost of flight delays at European airports was prepared by

the Performance Review Unit, EuroControl in 2004 [Cook et al., 2004]. This EC report

describes a methodology based on the cost factor approach and presents results detailing

the cost to airlines of delays during various segments of a trip. The costs are divided into

short delays (less than 15 minutes) and long delays (greater than 65 minutes). The report

provides the resultant multiplier (euros per minute) for any such segment. The types of

delays considered include gate delay, access to runway delay (both taxi in and out delays),
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enroutes delays, and landing delays (circling or longer flight paths to overcome congestion

while approaching the airport). The data used in the study consisted of data collected from

European airlines, air traffic management as well as interviews and surveys conducted by

the research team with airlines.

The EC report specifies that delays incurred can be of two types: “tactical delay” and

“strategic delay”. The report makes the distinction between tactical delays (delays en-

countered that are greater than the announced schedule, i.e., delays above the anticipated

padding of the schedule) and strategic delays (i.e., the delay relative to an unpadded sched-

ule). Both U.S. and European airlines increase the arrival time over unimpeded time so that

they can report on time performance even when the system is over-capacitated. Another

distinction that the report makes is between “gate-to-gate” (or single flight) delays and

“network-level delays”. The gate-to-gate delay is the delay that an individual flight incurs

based on the environment it encounters, while the network delays are the effects that the

flight causes to the rest of the network. The EC report discusses all of the above mentioned

types of delays. However, considering the congestion pricing model relevant to this disserta-

tion, the main interest is tactical primary delay since the main concern is the delay incurred

by an individual flight and how valuable that flight is relative to other flights scheduled to

arrive/depart within the same time interval. In the report, two types of delays have been

chosen for demonstration: delays of short duration (15 minutes or less) and delays of long

duration (65 minutes or more). Similarly, three cost scenarios have been used to “allow

more realistic ranges of values.”

The EC report describes the model as an additive model, where each component de-

scribes some proportion of the total cost. Table 3.2 shows what costs factors are included

as input in these cost scenarios under different delay characteristics. For details, see [Cook

et al., 2004]. Figure 3.1 details the inputs and outputs of their model.

Further exploration of their cost factors revealed the following costs involved:

• Fuel Cost: The report provides different fuel burn rates for each aircraft type studied

and for all segments of the flights. The prices for all cost scenarios and the conversion
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Figure 3.1: EuroControl Model

Table 3.2: Low, base and high cost scenarios

Factor
short delay type: long delay type:
15 minutes basis 65 minutes basis

low base high low base high

load factor 50% 70% 90% 50% 70% 90%

transfer passengers 15% 25% 35% 15% 25% 35%

arrival/departure domestic EU non-EU domestic EU non-EU

turnaround time 60 mins 60 mins 60 mins 60 mins 60 mins 60 mins

parking remote pier pier remote pier pier

fuel price low base high low base high

weight payload factor 50% 65% 80% 50% 65% 80%

airborne fuel penalty none none applied none none applied

handling agent penalty none none none none none charged

extra crew costs none none low none medium high

airport charges averaged averaged max/2 averaged averaged max/2

pax cost of delay to
0 0 0.05 0.32 0.40 0.48

AO, EUR/min

aircraft depreciation, Strategic cost model used Strategic cost model used
rentals & leases

BHDOC scenario low base high low base high

maintenance 15% 15% 15% 15% 15% 15%

rate from euros to dollars are also provided. (See Table 2-12 and Annex C in [Cook

et al., 2004]).

• Extra Crew Cost: The report defines extra crew cost as extra costs paid in addition

to the usual flight and cabin crew salaries and expenses. It may include employing
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additional crew (both flight and cabin crew) or incurring additional pay for regular

crews due to unexpected increases in working hours. The report does not specify the

exact methodologies used to obtain the crew cost component of the multiplier in order

to preserve confidentiality of airline data. However, the report describes under what

circumstances the cost factors will be increased (refer to Table 3.2).

• Maintenance Cost: The maintenance cost is defined to be the cost of maintaining

both the airframe and power plant of the aircraft. The additional maintenance cost

incurred for a one-minute delay is stated in the report as approximately 15% of the

“Block Hour Direct Operating Cost” (BHDOC). The proportions of how maintenance

costs are divided into different segments of the flights are given in Annex J of [Cook

et al., 2004]. BHDOCs are given in the report for low, base and high cost scenarios

for the 12 different aircraft systems studied (see Table 2-11 in [Cook et al., 2004]).

• Depreciation Cost: The report assumes that there is no additional depreciation cost

caused by delays. Thus, the depreciation component of total delay is taken to be zero

for all segments and cost scenarios.

• Passenger Delay Cost: Passenger Delay Cost (or PAX delay cost) is defined as the

compensation paid by the airlines to passengers who have experienced delayed flights.

Passenger Delay (in cost per passenger per minute) is given as: none for low and base

cost scenarios, 0.05 for the high cost scenario for 15 minutes of delay, and 0.32, 0.40

and 0.48 for low, base and high cost scenarios, respectively, for 65 minutes delay. The

load factors assumed are: 50% for low, 70% for base and 90% for high cost scenarios.

• Other Costs: This factor is a catch-all component that attempts to include any other

cost factors mentioned in Table 3.2 (such as parking, airport charges, handling agent

penalty, weight payload factor, etc.). No specific cost factors were given in the report,

except details of different airport charges at different EU airports (see Annex L in

[Cook et al., 2004]).
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Table 3.3: Tactical Ground Delay Costs (euro/min.): At-gate only (without network
effects)
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Table 3.4: Tactical Ground Delay Costs (euro/min.): taxi only (without network effects)

Based on the analysis done, the EC report provides cost of delay factors (in euros). The

delay is divided into three segments of the flight: delay on the ground at the gate (Table

3.3), delay while taxiing at either airport (Table 3.4) or delay while airborne (enroute and

holding, Table 3.5). These segments were chosen for discussion because they reflect the

fidelity of publicly available data.

3.3 Cost of Delay Model

Although the Eurocontrol model is detailed enough and covers almost all the factors involved

in the cost of delay, there is no way to update the cost factors since not all of the individual

cost factors are provided due to the proprietary nature of the embedded information. Also,

the model is based on data from European Union airlines for 12 aircraft types. In the absence

of this transparency, the factors provided prohibit the separation of fuel cost changes from

crew or maintenance costs and also prohibit an update of summary factors when any of
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Table 3.5: Tactical Airborne Delay Costs and Holding (euro/min.): (without network
effects)

these cost change or an alternative aircraft is considered. Therefore, in order to develop

a more transparent and reusable cost of delay model, regression analysis is performed to

learn the relationship between the provided costs (fuel, crew, maintenance, etc.) and the

computed factors.5 The idea is therefore to:

• identify coefficients for the cost factors

• model each of the individual coefficients and cost factors

• update the model with the publicly available costs of U.S. airlines

• extend the fleet mix to over 100 aircraft types

• update the model for changes in fuel cost

5This research is reported in [Kara et al., 2010a,Ferguson et al., 2011].
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• structure the model to enable the updating of the data over various time periods

3.3.1 Methodology

The methodology is divided into three major steps: starting with regenerating the Euro-

Control (EC) Model and then fitting the EC model in order to find the unknown coefficients.

Once the coefficients are known, it is demonstrated how the model can be used on U.S. data

for any carrier, aircraft type and load factor.

Regenerating the EC Model

This analysis starts with a similar additive general model for each of the different segments

paired with the different cost scenarios that include all the different cost factors. Due to

the fidelity of the available U.S. data, the flights are divided into three segments: gate, taxi

and enroute (which includes both airborne and holding). For each of these segments, three

cost scenarios and two range delays are provided, hence, for each of these 18 different cases

(segments × cost scenarios × delay ranges) are modeled:

Cdelay = cfuel × fuel burn rate× fuel price (3.1)

+ ccrew × crew cost

+ cmaintenance ×maintenance cost

+ cother × other cost

+ cpax × PAX delay cost× (# seats)× load factor

Table 3.6 shows the elements of the EC cost of delay model. The elements highlighted

in green were provided for all 18 scenarios and 12 aircraft in the report. The elements

highlighted in yellow were assumptions made for this analysis or derived inputs from 2003

BTS data. Lastly, the elements highlighted in red were derived from fitting this model to
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Table 3.6: Elements of EuroControl Cost of Delay Model
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Table 3.7: Elements of EuroControl Cost of Delay Model

the 216 data points (18 scenarios × 12 aircraft).

While the percentage of the Block Hour Direct Operating Costs (BHDOC) in euros was

provided for maintenance in the EC report, the percentage of the BHDOC for crew was

not provided. Therefore, the same percentage of crew costs for both European and U.S.

BHDOCs is assumed. Table 3.7 shows the 2003 BTS percentages for BHDOC for fuel, crew,

maintenance, and depreciation. These percentages were normalized for the given 15% of

BHDOC for maintenance, given in the EC report. Thus, 28% of BHDOC for crew costs is

assumed for this analysis.

Fitting the EC Model to find unknown coefficients

Microsoft Solver was used to find the crew, maintenance and the other cost factors’ coef-

ficients for each segment, each cost scenario and each delay range (3×3×2). The sum of

the squared difference between the EC report delay cost factors for the 12 aircraft versus

the fitted model’s cost factors were minimized to find the best fit for each segment. The

coefficients were constrained to be positive, larger than or equal to coefficients for each lower

cost scenario and larger or equal to coefficients for each lower delay range. The results of

these fits are shown in Table 3.8, the newly derived non-dimensional coefficients are shown

in blue.

Table 3.9 shows the goodness of fit of the newly derived model compared to the EC

Delay cost factors by aircraft type, segment, cost scenario and delay range using the 12

aircraft types used in the EC study. It is noted that these aircrafts represent 28% of the

U.S. domestic operations from 2005 to 2009. Values highlighted in green were overestimated
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Table 3.8: Fitted non-dimensional coefficients for crew, maintenance and other costs
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by the new model by more than 10% and values highlighted in red were underestimated by

more than 10%.

Examination of this data shows that the model fits the data especially well for all long

delays (over 65 minutes). It also fits well for taxiing out and at-gate delays. For both

the baseline and high cost scenarios, the taxiing out delays fit all but the very largest and

smallest aircraft which compose only 1% of the flights in the U.S. These estimates do show

a significant discrepancy for the low scenario for large aircraft while airborne. However,

for all other segments and scenarios, the derived factors are appropriate to use. For the

congestion pricing model, all delays are assumed to be gate delays and therefore the low

cost scenario can be used for the model.

Chi square goodness of fit tests were done to examine how statistically well these derived

coefficients fit the EC report factors, as shown in Table 3.10. All cost scenarios were

examined for airborne, taxi and gate delay cost factors. The chi square results showed

99.8% or better confidence that the model fit the original EC report factors for all cost

scenario and segments.

Modify Model for U.S. Data

To apply this model to the U.S. data, the following changes were made that are more

consistent to the U.S. airlines:

• Cost factors derived from the BTS P52 database (fuel price, crew and maintenance

cost) [BTS, 2007] are used.

• The fuel burn rate while en route from the BTS P52 database is used. Taxi burn rates

used are derived from the ICAO engine emissions databank. (See [ICAO, 2009]).

• The PAX delay cost coefficient is set to 0, since in the U.S., it is not incurred by the

airlines.

• For other delay ranges, the following formulas are used:

– For any delay less than or equal to 15 minutes, the 15 minutes cost factor is used.
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Table 3.9: Percentage Difference of model vs. EC Report factors
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Table 3.10: Chi square Fit of Cost of Delay model vs. EC Report factors

Figure 3.2: Tactical Ground Delay Costs: Gate only vs. Operational Costs

– For any delay above 65 minutes, the cost factor for 65 minutes and above delay

is used.

– For delays between 15 and 65 minutes, a cost factor is interpolated using the two

data points above.
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Figure 3.3: Tactical Ground Delay Costs: Taxi only vs. Operational Costs

Before beginning the work to determine the cost coefficients for the new model, an

examination of overall cost factors in the U.S. compared to those incurred in Europe was

observed. The delay cost factors were computed, based on the EC factors, for the different

types of segments (gate, taxi and airborne-and-holding) and for the given 12 aircrafts. These

delay cost factors were compared with the average operational cost per minute using P52

[BTS, 2007] data from the BTS database for U.S. airlines.

Figures 3.2-3.4 show that in each of these flight segments the shape of the curves are

similar, affirming that these cost factors are consistent with the operational costs in the

U.S. These results support the assumption of that it is appropriate to use BTS crew cost

percentages of Block Hour Operating Costs (BHDOC) when calculating total costs.

When using the same model but using fuel burn rates as reported in U.S. databases, the

analysis shows that fuel burn rates reported in the U.S. are lower than those reported in the
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Figure 3.4: Tactical Airborne Delay Costs: Enroute and Holding vs. Operational Costs

EC report. This means that even using the model postulated in the EC report, U.S. airlines

show slightly lower costs for equivalent delays than that of the EC report. Coefficients for

the base cost scenario from Table 3.8 is used for developing U.S. delay cost factors.

The next section (Section 3.4) shows results of a case study where the costs of delays

derived are applied for computing the operational delay costs for aircraft not described in

the EuroControl study. Such aircraft represents 72% of aircraft operations in the U.S. These

factors can be derived for any time period for which historical BTS cost data is available.

For the network effect of these delays, the delay multipliers based on American Airlines

case study (see [Beatty et al., 1998] or Table 2-20 in [Cook et al., 2004]) can be used.

66



Table 3.11: July 2007 Departure delays by segment of flight for selected airports

Table 3.12: July 2007 Departure delays for airlines exceeding $1M in delay costs

3.4 Results of Case Study

This study examines delay costs for U.S. airlines departures from 12 major airports (EWR,

JFK, LGA, DCA, BWI, IAD, SFO, OAK, SJC, BOS, PHL, DFW) for one of the busiest

months in U.S. aviation history (July, 2007). Delays by segment of flight, by aircraft type,

by airline and by hour of day are examined in this case study. ASPM [ASPM, 2007] Flight

Data is used to obtain the duration of these delays. Tables 3.11-3.16 show the results of

this case study.

Table 3.11 indicates that even though the majority of delays occur on the ground (87%),

the airlines incur the greatest delay costs while their flights are airborne (65%). Since a

flight delayed in the air is twenty times the cost of an aircraft delayed at the gate, there is

an economic advantage for airlines to hold flights at the origin airport rather than delayed

in the air.
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Table 3.13: July 2007 Departure delays for aircrafts exceeding $1M in delay costs

Table 3.12 shows the airlines that exceeded one million dollars in delay costs for July

2007 from the selected airports in this study. American Eagle realized the lowest delay costs

per flight, largely due to their more fuel efficient fleet of CRJ-700s, Embraer ERJ-135/145s,

and SAAB 340 turboprops. Delta Airlines, on the other hand, showed the greatest delay

costs per flight, mostly due to their less fuel efficient fleet.

Table 3.13 shows the aircraft that exceeded one million dollars in delay costs for July

2007 from the selected airports for this study. As expected, the fuel efficient Embraer ERJ-

135/145s showed the lowest delay costs per flight. However, the older less fuel efficient

MD88s and B757-200s show the greatest delay costs per flight.

Analysis of the airline delay costs by time of day (Table 3.14) shows that average cost

of delay per flight ramp up from lows in the early morning (5-6 am) to a peak between 5-6

pm and then begin to subside with relatively small costs by 10 pm. The gate delay costs

are highest in late afternoon (5-7pm), whereas taxi out delays are highest between (4-6

pm) and airborne delays are highest in the early mornings (6-9 am). Overnight flights can

also have significant delay costs, but these reflect the few large aircraft flights that, when
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Table 3.14: July 2007 Departure delay costs by time of day

delayed, exhibit these as costly airborne delays.

Table 3.15 shows that parity rarely exists between opposite markets. An extreme case of

opposite markets is highlighted in red (JFK-ANC and ANC-JFK); these markets’ average

varies by $754. Another opposite markets pair is highlighted in green (SFO-LAX and LAX-

SFO), because these markets’ average delay costs per flight are within $28 of each other.

Table 3.16 evaluates the differences in delay costs among the 12 selected airports. It

is observed that average delay costs for departures out of JFK are twice the average delay

costs of departures from DFW.

From the above analysis, the following conclusions are made:

• The cost factors from the EC report and costs as reported by U.S. carriers in BTS P52

database follow similar trends. Thus, the general approach taken by EuroControl can

be applied, with minor modifications, to compute the cost of delays of U.S. flights.
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Table 3.15: July 2007 Departure delay costs for top 12 market pair delay costs

• The appropriate multipliers for crew and maintenance costs are determined that, when

combined with the other factors, produce multipliers close to those reported in the

EC report.

• Airborne delays, when incurred, dominate ground delay costs, so airlines are econom-

ically encouraged to maximize ground delay costs.

• Newer, more fuel efficient aircraft provide airlines with the least delay costs.

• The cost of delay is not proportional to the flights flown. One reason for this non-

intuitive result is that when a flight is cancelled, it is recorded as having zero delay.

The calculations of the cost of delayed flights (ignoring all cancelled flights) total $63.8M

for July 2007. Many economic modeling and analysis efforts require a good understanding

of the costs that an airline will incur when it experiences delays at the gate, while taxiing or

while enroute. This model provides a relatively straightforward mechanism for calculating
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Table 3.16: July 2007 Departure and delays and delay costs for 12 selected airports

such costs and for predicting how such costs are likely to increase when there is a change

in fuel costs, aircraft type, or when some other cost might be added to the overall cost

structure. It is informative explaining why airlines are currently down-gauging the aircraft

size: the newer regional jets are more fuel efficient and airborne fuel costs dominate the

overall cost. Fuel costs, coupled with the fact that the airlines can offer increased frequency

and observe higher load factors, encourage airlines to down-gauge. Although such policies

are favored by the industry, they result in less efficient use of both the airspace and airport

runways.

3.5 Sensitivity Analysis

In order to further understand the model, a sensitivity analysis was performed on the cost

of the delay model and initial results were reported in [Kara et al., 2010b]. This section

briefly describes the approach therein.

Fuel and crew costs influence delays since they have the highest impact on operational

costs. Therefore, these costs were varied and observations were made on how the delay

costs incurred by airlines are impacted by variations in these costs. In previous work

[Ferguson et al., 2009], it was observed that airlines have incurred far wider swings in fuel

costs between 2005-2009 than any variation seen in crew costs, maintenance costs or other

operations costs. Fuel costs have been as low as $2.50 per gallon and as high as $3.50 per

gallon during this time period. In contrast, crew, maintenance and depreciation costs have
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remained relatively flat. On further examination, significant changes in crew costs during

the period 2000-2005 were also observed, therefore sensitivity analysis is also performed on

these costs.

3.5.1 Methodology

For fuel price changes, the variation was per gallon fuel charges from $1.50 to $4.50 with the

base price being $2.04 (the average fuel price incurred by the airlines during the Summer

2007). Since no fuel is burned while at the gate, only the taxi and airborne segments of

delayed flights are examined. These changes were computed for 30 minutes of delay, since

the trends are similar across all delay ranges greater than 15 minutes (due to interpolating

the delay cost for ranges between 15 and 65 minutes). The BTS P52 database [BTS, 2007]

is used to determine aircraft type for each flight and taxi burn rates are used from ICAO

engine emissions databank [ICAO, 2009].

For crew costs, BTS P52 [BTS, 2007] is used to determine crew costs per hour by aircraft

type for Summer 2007 (as a base cost) and these costs are then varied by decreasing and

increasing such costs by as much as 50%. Crew cost changes for longer delays (above 65

minutes) are shown only since such costs become significant to total delay costs when delays

increase significantly. For shorter delay ranges, the shape of the graph remains constant

(i.e., a straight line), although the absolute costs will be proportionately less.

All the aircraft types that were flown during Summer 2007 and reported in ASPM

[ASPM, 2007] were used.

3.5.2 Results

Sensitivity of Total Delay Costs to Fuel Price Changes

Figure 3.5 compares the percentage change in total cost of delay for airborne and taxi

delays. High fuel prices (e.g., $4.50 per gallon) result in the total cost of delay increasing

by almost 53% when airborne as compared to a 42% increase for taxiing delays.
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Figure 3.5: Change in Cost of Delay (30 minutes of delay) airborne vs. taxi delay

Figure 3.6 examines how the cost of delay varies with aircraft type during the airborne

segment of the trip. All aircrafts have the same general relationship to fuel price when

graphing the percent change in delay against the change in fuel cost curve. Of course, the

absolute change in delay cost as fuel cost increases is dependent on the aircraft type. For a

30-minute airborne delay, with a fuel price of $4.50 (more than 200% increase), the delay

cost can vary from less than $13.00 per minute (for aircraft type E120) to as large as $300.00

per minute (for aircraft type B74S, a variant of the B747).

The greatest change in the delay cost is incurred by the aircraft type B74S (a variant of

B747), with an increase of about 200% from $101 to $300, when comparing current prices

of approximately $2.00 per gallon to a high price of $4.50 per gallon.

Similarly, when averaging the delay costs of aircraft from a given manufacturer and

looking at the delay costs by manufacturer, Figure 3.7 shows the change in cost of delays
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Figure 3.6: % Change in Cost of Delay with fuel price change (30 minutes of airborne
delay) major aircrafts

when fuel price changes from $1.50 to $4.50. The delay cost, when the fuel price is $4.50,

ranges from a low of $20 per minute for Dash’s aircraft type, to a high of approximately $220

per minute for Lockheed aircraft type. Exact delay costs computed for both 30 minutes of

airborne delays and taxi delays for each aircraft is provided in the Appendix D.

In the U.S., the approach to handling over-capacity is to try to have as much of the delay

take place on the ground rather than in the air. This is accomplished through the Ground

Delay Program (GDP) whereby planes are precluded from taking off until there is sufficient

airspace and runway availability to ensure that the airborne delay is small. Therefore, for

any typical delayed flight, long airborne delays are rare. According to the Schumer report

[Schumer, 2008], in 2007, airborne delays accounted for about 15% of total delays.

Thus, it is the taxiing segment of the flight that incurs the majority of the fuel delay

cost. For the taxi segment, taxi burn rates are used. These burn rates are approximately
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Figure 3.7: Airborne delay cost vs. fuel prices (average by manufacturers)

7%6 of the airborne fuel burn rate. This means, that more than fuel price, different fuel

burn rates impact the changes in cost of delay.

During taxiing it is observed that aircraft types have more varied effects on delay costs

due to significantly different taxi burn rates. Figure 3.8 shows the percent change in cost

of delay with changes in fuel prices for aircraft types grouped by manufacturer. Airbus and

Boeing aircrafts are most sensitive to fuel price changes due to their higher fuel consumption.

Embraer jets are the most efficient with Dash’s and Regional Jets (CRJ’s) following them.

Table 3.17 shows the mean and range of percent change in delay cost for 30 minutes of

taxi delay for different aircrafts grouped by manufacturer. Range is defined here as the

difference between the maximum and the minimum value.

In the case of the Airbus, the A310 is the most efficient (34% change in cost of delay)

6Fuel burn rates are derived from BTS P52 [BTS, 2007] and Taxi burn rates are derived from ICAO

Engine Emissions [ICAO, 2009]. The percentage is the difference observed between them.
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Figure 3.8: Change in Cost of Delay with fuel price change (30 minutes taxi delay)
average by manufacturers

while A346 is least efficient (50% change in cost of delay at fuel price $4.50). For Boeing, the

range is between 31% and 49% change in cost of delay with B727-100 being most efficient

and B747 being the least. In the case of Dash’s, the DC8 is the most sensitive to fuel price

changes: 51% change in cost of delays with a fuel price of $4.50 while most of the aircraft

lie between 38% and 47% range of percentage change. For regional jets, apart from E110,

which is a business jet and out performs all of the others, most lie in the 39%-44% range.

Sensitivity of Total Delay Costs to Crew Cost Changes

For crew cost changes, the aircrafts were grouped by seat size, varying the size by 25 seat

increments. Figures 3.9, 3.10 and 3.11 and Tables 3.18, 3.19 and 3.20 show the percentage

change in cost of delay for gate, taxiing and airborne delays, respectively, of a 65 minute

duration.
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Table 3.17: Mean and range of %Change in delay cost by manufacturers for different fuel
prices for 30 minute delay at taxi

Manufacturer
Fuel Price

$1.50 $3.00 $4.00 $4.50
Mean Range Mean Range Mean Range Mean Range

Airbus -22.3% 15.7% 24.3.6% 11.6% 39.6% 15.7% 45.1% 16.5%

Boeing -20.9% 15.5% 23.4% 12.2% 38.3% 16.8% 43.7% 17.8%

Dash, MD’s
-20.0% 14.9% 22.7% 10.2% 37.5% 13.3% 42.9% 13.8%

and DC’s

Regional Jets -17.0% 12.6% 20.5% 11.6% 34.4% 17.0% 39.7% 18.4%

Figure 3.9: % Change in Cost of Delay vs. % Crew Cost Change (> 65 minutes gate delay)

For the ground delay segment, since there is no fuel factor involved and crew costs are

the major portion of the delay costs, the changes in crew cost incur proportional changes

in cost of delay. At a 50% increase in crew costs, the percentage increase in delay costs is

around 30% for all seat sizes. The larger seat size group of aircrafts tend to be affected
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Table 3.18: %Change in Cost of Delay vs. %Change in Crew Costs (> 65 minutes gate
delay)

%Change in Crew Cost

Seat Size -50% -25% -10% 10% 25% 50%

0-25 -76% -28% -9% 8% 18% 30%
26-50 -69% -26% -9% 8% 17% 29%
51-75 -73% -27% -9% 8% 17% 30%
76-100 -84% -29% -10% 8% 18% 31%
101-125 -83% -29% -10% 8% 18% 31%
126-150 -83% -29% -10% 8% 18% 31%
151-175 -82% -29% -10% 8% 18% 31%
176-200 -76% -28% -9% 8% 18% 30%
201-225 -88% -31% -10% 9% 19% 32%
226-250 -85% -30% -10% 8% 19% 31%
251-275 -88% -31% -10% 9% 19% 32%
276-300 -87% -30% -10% 9% 19% 32%
301-325 -90% -31% -10% 9% 19% 32%
376-400 -88% -31% -10% 9% 19% 32%
401-425 -89% -31% -10% 9% 19% 32%
451-475 -91% -31% -11% 9% 19% 32%

more than the smaller seat size group, due to their larger crews. For the taxiing segment,

the percentage change in delay costs are less affected by a percentage in crew costs. This

is due to the fact that during this segment fuel costs dominate the total cost. At a 50%

increase in crew costs, the percentage increase in delay cost is less than 30%.

In the taxi component of delay costs, the larger seat size groups are less affected by crew

costs as compared to the smaller seat size group. This is due to the fact that for larger

aircrafts taxi burn rates are higher, making the total delay cost more sensitive to fuel burn

and making the change in delay costs due to changes in crew costs relatively smaller.

For the airborne segment of the trip, the fuel costs become the major component of

delay costs. The difference in the percentage change of delay costs for different seat size

groups is more visible; larger aircraft are less affected due to their higher fuel burn rates.

A 50% increase in crew costs results in percentage change in delay costs between 2% and

8%.
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Table 3.19: %Change in Cost of Delay vs. %Change in Crew Costs (> 65 minutes taxi
delay)

%Change in Crew Cost

Seat Size -50% -25% -10% 10% 25% 50%

0-25 -54% -21% -8% 7% 15% 26%
26-50 -43% -18% -6% 6% 13% 23%
51-75 -45% -18% -7% 6% 13% 24%
76-100 -52% -20% -7% 6% 14% 25%
101-125 -43% -18% -6% 6% 13% 23%
126-150 -41% -17% -6% 5% 12% 22%
151-175 -41% -17% -6% 5% 13% 22%
176-200 -35% -15% -5% 5% 11% 20%
201-225 -45% -18% -7% 6% 13% 23%
226-250 -38% -16% -6% 5% 12% 21%
251-275 -38% -16% -6% 5% 12% 21%
276-300 -34% -15% -5% 5% 11% 20%
301-325 -41% -17% -6% 6% 13% 23%
376-400 -26% -12% -4% 4% 9% 17%
401-425 -28% -12% -5% 4% 10% 18%
451-475 -32% -14% -5% 5% 11% 19%

Table 3.20: %Change in Cost of Delay vs. %Change in Crew Costs (> 65 minutes
airborne delay)

%Change in Crew Cost

Seat Size -50% -25% -10% 10% 25% 50%

0-25 -7% -4% -1% 1% 3% 6%
26-50 -7% -3% -1% 1% 3% 6%
51-75 -8% -4% -2% 2% 4% 7%
76-100 -9% -4% -2% 2% 4% 8%
101-125 -6% -3% -1% 1% 3% 5%
126-150 -6% -3% -1% 1% 3% 6%
151-175 -5% -2% -1% 1% 2% 5%
176-200 -4% -2% -1% 1% 2% 4%
201-225 -5% -3% -1% 1% 2% 5%
226-250 -5% -2% -1% 1% 2% 4%
251-275 -4% -2% -1% 1% 2% 4%
276-300 -4% -2% -1% 1% 2% 3%
301-325 -4% -2% -1% 1% 2% 4%
376-400 -4% -2% -1% 1% 2% 3%
401-425 -3% -1% -1% 0% 1% 2%
451-475 -3% -1% -1% 1% 1% 3%
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Figure 3.10: %Change in Cost of Delay vs. %Crew Cost Change (> 65 minutes taxi delay)

3.5.3 Conclusion

From the results regarding the sensitivity analysis, the following observations were made:

• Fuel costs have the greatest impact on delay costs. An increase in fuel price of about

200% (from $2.04 to $4.50) increases the cost of delay by up to 50% for airborne

delays.

• This result is consistent with the current process for handling delays. Namely, the

Ground Delay Program (GDP) is designed to have aircrafts incur the delays, when

possible, at the gate or while in line for takeoff rather than while airborne.

• Since airborne delays are relatively infrequent (about 15% of the whole delay incurred

by flights in Summer 2007), taxi segments of the flight are the ones that create the

greatest operational cost to the airline with respect to fuel price changes.
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Figure 3.11: %Change in Cost of Delay vs. %Crew Cost Change (> 65 minutes airborne
delay)

• Fuel burn rates are as important as fuel prices; the same amount of taxi delay in an

efficient aircraft can save delay costs by as much as 10%.

• This analysis has also shown that fuel burn rates for regional jets are better than those

for larger aircraft. Thus, by choosing to use smaller regional jets, the airlines save on

total operational costs while providing the opportunity to have greater frequency and

higher load factors.

• As fuel costs increase, crew costs become far less important to the overall delay and

flying costs, since fuel costs are the major component. For ground delays, however,

crew costs are a larger component of total delay costs, and larger aircraft are most

impacted since they have larger crews.

• This analysis of delay costs is consistent with current airline behavior. Namely:
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– Smaller aircrafts in the current fleet have better fuel burn rates than larger

aircraft and can be flown with higher load factors (since it is easier to fill a

smaller plane), so the airlines are likely to continue to use these aircrafts.

– When airlines use smaller aircrafts, besides saving on fuel costs, they may also

have greater flexibility in repositioning passengers since there are fewer passen-

gers per aircraft.

– By using smaller aircrafts, an airline can increase frequency to a given market.

This analysis therefore concludes that, as the economy recovers from the current recession,

it is expected that the airlines are more likely to increase frequency rather than up-gauging

to larger aircraft. Although this practice might not be efficient from an airspace-use per-

spective, it makes good economic sense for an airline.

3.6 Summary

This chapter starts with the discussion of why it is important to determine the cost of delays

to not just airlines, but to the whole U.S. economy. An introduction was provided about

other approaches that compute the cost of delay to airlines and where these approaches

have been used. Section 3.3 discusses in detail the approach introduced in this dissertation,

along with the conclusions that were drawn based on the new model. Lastly, a sensitivity

analysis was reported on this model that supported airlines current behavior of using more

frequent, smaller aircrafts despite the fact that they increase the congestion at both airports

and in the airspace.

This research considered only delay costs. Work by [Rupp, 2005] performed regression

models to determine the relationships between delay costs and both congestion prices and

cancellations. A key conclusion drawn in Rupp’s analysis is that airlines’ cancellation and

delay decisions are interdependent and therefore need to be treated as a single decision

process. Several factors, such as hub vs. non-hub airlines, larger vs. smaller aircraft,

etc., are identified as deciding variables that determine the final status of flights. Similarly
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[Xiong, 2010] also found that airlines behave significantly differently regarding cancellations;

larger legacy carriers have a tendency to cancel less important shorter flights in order to

reduce delays for larger aircrafts.

This chapter introduced a major component of the congestion pricing model that is

described in the next chapter.
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Chapter 4: The Congestion Pricing Model

This chapter describes the model used for generating congestion prices. Section 4.1 in-

troduces the proposed model and compares it to some of the approaches discussed in the

literature review. Section 4.2 illustrates the idea using the example presented in Chapter 2.

Section 4.3 discusses the sources of data in detail. Section 4.4 discusses the preprocessing

of the data required for the model. Section 4.5 describes the Revenue/Cost model. Section

4.6 provides a brief summary of the Cost of Delay model. Section 4.7 describes the Opti-

mization model which is the core component of the Congestion Pricing Model. Section 4.8

describes the use of the model. Section 4.9 mentions other details about the model. Finally,

the last section describes some possible extensions to the model.

4.1 Introduction

The proposed congestion pricing model is an extension of the econometric model described

earlier. Similar to [Morrison et al., 1989], the day is divided into time periods. However, a

fifteen minute time window is chosen to be the time period, rather than the time window of

one hour chosen by [Morrison et al., 1989]. Also, in contrast to their model, the proposed

model computes the unique revenue for each individual flight and its associated costs (both

normal operating costs and delay costs). The model only looks at arriving flights with the

presumption that applying congestion pricing to the arrivals will also control the departing

flights. This is consistent with the current GDP approach. A more structured model is

used to compute the cost of delays incurred by airlines unlike other econometric models

which use only the average cost per minute multiplied by the number of minutes of delay.

Instead, a cost of delay model is used which is dependent upon where the delay occurs and

is nonlinear in the amount of delay. An equilibrium price is determined such that “given
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price and capacity, no flight operator has incentive to change its flight status.” A flight

status can be flown on time, delayed or cancelled.

Unlike [Morrison et al., 1989], a spill-over is considered from one period to the next.

That is, a flight can opt to arrive at either its preferred (scheduled) time period or in any

subsequent time period.1 This is similar to the model described in [Betancor et al., 2003],

although their model only studied spill-over to one additional time period (for a total of

two time periods). The price in most general econometric models is independent of prices

in subsequent time periods, however, in the proposed model a flight might be allotted a slot

later in the day due to the spill-over effect. This results in a greater economic efficiency

as there are more choices available to each participant, leading to reduction of congestion

prices at different time periods.

The proposed congestion pricing model is different from a bottleneck congestion model

which captures the stochastic nature of traffic and weather. In contrast, the new model

is deterministic and therefore does not consider the capacity changes that may occur later

in the day. It assumes full knowledge of the day of operations before hand, i.e., it has to

be given the capacity for the whole day in advance. However, in order to compute new

congestion prices based on an updated scenario, the model may be run again by updating

the data, (e.g., updating the capacity, fixing the flights that are already airborne, etc).

In addition, the model assumes that all the stakeholders involved are compliant. That

is, all parties will choose to pay the toll if the flight remains profitable and will choose the

most profitable time period based on maximizing profit. The experiments will assess the

sensitivity of prices to this assumption. Since the model is profit maximizing, it assumes

that all airlines will have a profit maximizing objective. It is noted that there may be

other factors that would alter this objective and have added both costs and constraints

to accommodate some identified exceptions. These additional considerations are discussed

later in this chapter. In addition, whenever the user of the model finds that demand and

supply are not in equilibrium, the input data be can updated, the already assigned slots

1The number of subsequent time periods is explored further in the design of experiments.
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fixed and the model run again.

4.2 Illustrative Example Revisited

Consider the example shown in Figure 4.1(a) from Chapter 2. The same schedule is used;

however, now the congestion pricing might change the allocation made. Figure 4.1(b) shows

the reduced schedule along with the congestion price (the numbers below the bold red line).

The rationale is quite simple: for each time window, the proposed approach assigns the

slot to the most profitable flights, but does not schedule any flight prior to its scheduled ar-

rival time. Once capacity is reached for a given time period, flights are cascaded to the next

time window and the procedure continues. However, if that was the only case, Piedmont

flight (PDT[DH8A,$9,768]) should have been in the second time window instead of the third

time window, as appears in Figure 4.1(b). This is because it is marginally more profitable

for the Piedmont flight to be delayed than the Com Air flight (COM[CRJ1,$9,051]). The

total profitability of the schedule increases by allowing the PDT flight to be delayed one

time window in order to allow the Com Air flight to use this slot.

Note that this system will automatically swap the flights among airlines when a given

flight of one airline is more profitable than a given flight of another (or same) airline.

The end result is a new, reduced schedule with the most profitable flights flying as close

to their scheduled time as possible. The model will also have an airline delay a flight (even

if it is profitable in a given time period) if delaying that flight will yield it more profit. Thus,

if it is more profitable to delay a flight 15 minutes (and thereby pay a 15-minute delay cost

plus the congestion price of the next time period), the flight will be delayed.

From the literature review and the discussion in the previous section, it is known that

the congestion price should be exactly equal to the marginal benefit of adding one additional

resource to the current system. Simply put, the congestion price for any time window should

be equal to the “dual price” of the capacity constraint for the time window. In this example,

for the first time window, Com Air flight COM(CRJ,$8,553) is the extra flight that will be
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Figure 4.1: (a) Original Schedule, (b) Ration by Congestion Pricing (CP) Allocation

added given increased capacity; therefore, the congestion price for the first time window is

$8,553. At this congestion price, rationally, this flight is not generating additional revenue

to the system and therefore, the model will delay it to the next time window. For any

flight delayed in the first period, the profit of that flight in the next period is equal to its

original profit minus its cost of delay for one time period. All flights scheduled in this time

period plus those delayed and still waiting for a slot all compete for the capacity of this

time period. For example, Chautauqua’s flight CHQ(E145,$11,434) departs in the second

time window as scheduled whereas Big Sky’s flight BSY(B190,$7,389) is delayed two time

periods and the first of two Com Air flights is delayed more than two time periods.

4.3 Data Sources

The data comes from the following sources:

Aviation System Performance Metrics (ASPM) [ASPM, 2007]

• ASPM Flight Data Dictionary provides all the flown flights with both the scheduled

and actual time in terms of fifteen minute time bins. It also provides, aircraft type,

air carrier, origin and destination for each flight, and tail numbers and flight numbers

for most of the flights. A fifteen minute time bin is referred to as time period (or time
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window). Thus, there are ninety-six time periods in a day. The “ideal” departure

time is estimated to be the scheduled departure time for the flight.

The Airline Origin and Destination Survey (DB1B) [DB1B, 2007]

The Airline Origin and Destination Survey (DB1B) is a 10% sample of airline tickets from

reporting carriers collected by the Office of Airline Information of the Bureau of Transporta-

tion Statistics. Data includes origin, destination and other itinerary details of passengers

transported. This database is used to determine air traffic patterns, air carrier market

shares, and passenger flows. DB1B Market table contains directional market characteris-

tics of each domestic itinerary of the Origin and Destination Survey, such as the reporting

carrier, origin and destination airport, prorated market fare, number of market coupons,

market miles flown, and carrier change indicators. This database provides the airfares

between markets.

Bureau of Transportation Statistics (BTS) [BTS, 2007]

• BTS P52 provides the operational cost for the flight. Operational cost includes direct

cost (both “total flying cost” and “total fuel cost”), hours of flight and gallons of fuel

issued. The direct cost along with hours of flight is used to compute fixed cost per

hour, while the latter two are used to compute fuel used in gallons per hour or fuel

burn rate per hour (variable cost). It also provides the maintenance cost and crew

costs for the cost of delay model.

• BTS T100 provides both the total number of passengers and total seats flown which

are used to calculate load factors. These load factors combined with airfare from

DB1B give the revenue per flight.

• BTS ONTIME also provides the scheduled and the actual departure and arrival times

for all scheduled flights. In addition to ASPM, BTS OnTime also has canceled flights.

However, the number of flights in the BTS database is considerably smaller than those
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in ASPM. This is due to the fact that not all carriers report to BTS, while ASPM is

the extended version of the ETMS.2 The preprocessing section (Section 4.4) discusses

how both these databases are used in order to generate a single compact schedule of

the flights per day at the studied airports.

International Civil Aviation Organization (ICAO) Engine Emissions Databank

[ICAO, 2009]

ICAO emissions database provides the taxi fuel burn rate per aircraft type used to compute

the cost of delay of a fuel usage costs.

Airport Capacity Benchmark Report 2004 [FAA, 2004]

This report provides three different rates for hourly number of operations (including both

arrival and departure) based on different weather scenarios:

• Optimum: represents good weather with visual separation.

• Marginal: describes weather not good enough for visual approaches, but still better

than instrument conditions.

• IFR: Instrument Flight Rules, defined as instrument conditions (ceiling less than 1000

feet or visibility less than 3 miles) when radar is required to separate aircraft.

For a given hourly capacity, it is assumed that there are equal number of arrivals and

departures, although the model is flexible in handling whatever capacities are provided by

air traffic control (ATC).

4.4 Preprocessing

During the preprocessing step, two different schedules (one from ASPM and one from BTS)

are merged into a single, more complete schedule. Since there is no obvious way to pair

2Enhanced Traffic Management System.
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flights from one schedule to the other, a variety of heuristics are used to generate the final

schedule. The preprocessing is as follows:

• All flights flown by international flights (whether between two domestic airports or

one domestic and one international airport) are fixed to be flown.

• All flights that are flown by domestic airlines to or from international destinations are

fixed to be flown.

• All cargo flights, humanitarian and military flights (that appear in ASPM) are fixed

to be flown.

• All General Aviation (GA) flights are removed from the system under the premise

that the commercial flights have a higher priority than these flights. Any unused

capacity can be assigned to GA flights.

• From the BTS Ontime schedule, flights that are reported canceled are considered by

the model as potential flights. These flights are not used for pairing of flights since

ASPM schedule only contains flown flights.

• From BTS Ontime schedule, flights that are reported diverted are removed from the

system. Since, by definition3 a diverted flight “is [a] non-stop flight that lands at

a destination other than the original scheduled destination.” These flights are never

reported into ASPM as it only records flown flights.

For all the fixed flown flights, the time slots (at their actual flown time) are pre-assigned

to these flights and capacity limits are reduced accordingly. These fixed flights can be

termed as “exempted” flights in GDP scenarios.

Once all these flights are separated, the remaining flights are paired. The goal is to

remove duplicate copies of flights so that all flights are considered only once. Also, since

both schedules provide extra information about the flights, pairing these flights will help

3As mentioned in [DOT, 2008].
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Figure 4.2: Preprocessing step

explain the final status of these flights both historically and from the model output. Figure

4.2 shows the division graphically.

4.4.1 Pairing Flights: Algorithm

In order to pair the flights, queries are used to join the different tables (i.e., ASPM and BTS

OnTime) in an attempt to find the perfect match between flights from different schedules.

These queries start with the most constrained cases and remove constraints at each step.

A manual check is performed after each query to ensure that no flight from either schedule

is paired to multiple flights. The queries in which the flights are paired are listed below in

sequential order:

1. Query1 Join by date, airport, origin, destination, carrier where time windows are

equal, flight numbers are equal, aircraft type are equal and tail numbers are equal.

2. Query2 Join by date, airport, origin, destination, carrier where time windows are

equal, flight numbers are equal and tail numbers are equal.

91



3. Query3 Join by date, airport, origin, destination, carrier where time windows are

equal, flight numbers are equal and aircraft type are equal.

4. Query4 Join by date, airport, origin, destination, carrier where time windows are

equal, aircraft type are equal and tail numbers are equal.

5. Query5 Join by date, airport, origin, destination, carrier where time windows differ

by one, flight numbers are equal, aircraft type are equal and tail numbers are equal.

6. Query6 Join by date, airport, origin, destination, carrier where time windows are

equal and tail numbers are equal.

7. Query7 Join by date, airport, origin, destination, carrier where time windows are

equal and aircraft type are equal.

8. Query8 Join by date, airport, origin, destination, carrier where time windows are

equal and flight numbers are equal.

9. Query9 Join by date, airport, origin, destination, carrier where time windows differ

be one, flight numbers are equal and aircraft type are equal.

10. Query10 Join by date, airport, origin, destination, carrier where time windows are

equal.

11. Query11 Join by date, airport, origin, destination, carrier where time windows differ

by one and aircraft type are equal.

12. Query12 Join by date, airport, origin, destination, parent carrier (wherever possible)

where time windows are equal, flight numbers are equal, aircraft type are equal and

tail numbers are equal.

13. Query13 Join by date, airport, origin, destination, parent carrier (wherever possible)

where time windows are equal, flight numbers are equal, and either aircraft type are

equal or tail numbers are equal.
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14. Query14 Join by date, airport, origin, destination, parent carrier (wherever possible)

where time windows are equal, and either flight numbers are equal or aircraft type

are equal or tail numbers are equal.

15. Query15 Join by date, airport, origin, destination, parent carrier (wherever possible)

where time windows differ by one.

16. Query16 Join by date, airport, origin, destination, parent carrier (wherever possible)

where time windows differ by at most 4 and flight numbers are equal

From Query12, the ASPM schedule is joined by parent carriers since most of the regional

carriers use the parent carriers’ designation and the BTS schedule might report flights as

mainline carriers’ flights. A manual check is performed at the end to see if any further

flights can be paired. Remaining unpaired flights from either schedule are added to the

final schedule. As a result, a single schedule is generated for each day at each airport.

The canceled flights from BTS are then added to the final schedules. Each final schedule

contains for each flight: a scheduled time in terms of time period, air carrier,4 aircraft type5

(priority is given to ASPM, in case of conflict), origin, destination and whether it is an

arriving or departing flight at the airport under study. Lastly, if available, the status of the

flight historically (whether it was flown/canceled) is also added for analysis purposes.

After a single schedule is generated using these two different tables, the next step is to

compute the revenue and cost factors for each flight along with any other fees imposed on

the flight.

4ASPM and BTS OnTime use different code schemes for air carriers. In BTS OnTime, flights operated
by regional carriers are often reported as operated by mainline carriers. All the flights in ASPM schedule are
also changed accordingly. The link between mainline and regional carriers is generated manually by looking
at which regional carriers fly under which carriers at different airports.

5Similar to air carriers, BTS and ASPM use different code schemes for aircraft types, using historical
data; a complete database table is generated to link these code schemes.
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4.5 Revenue/Cost Model

In order to compute congestion prices, it is important to understand the economics of the

airline industry and thereby, the price that will result in agreement between supply and

demand. Thus, there is a need to know the value that an airline places on a given flight.

An important point worth mentioning is that these models will not be able to include the

exact costs incurred by any given airline. However, reported costs of running aircraft of

various sizes and the average costs incurred by a given airline for fuel, crew, maintenance

and depreciation are collected and used to obtain reasonably accurate comparative values

for a given set of flights.

To calculate a congestion fee, for each flight segment, the following data is collected:

• Revenue (R) of a flight is the total amount generated by the flight. It is a multiple of

average airfare between the airports (both direct and connecting flight’s ticket prices

are used) and the average load factor (from BTS T100). The revenue also discounts

the other fees collected with the ticket price by airlines, but are not part of the airlines

revenue (more specifically, 94.9% of airfare is used6). In addition to these discounts,

additional revenue generated by belly cargo and other miscellaneous fees (e.g., baggage

fee, booking cancellation fee, etc.) are also added ($0.44 per ticket). The final airfare

is thus,

New Airfare = 0.949×Airfare + $0.44.

• Operating Cost (O) of a flight is the dollar amount it costs an airline to operate the

flight. Only direct costs are considered which include: maintenance, labor and other

costs. No lease, depreciation or other indirect costs are included in this operating

cost. These direct costs7 per hour are reported by the airlines in BTS P52 Database

[BTS, 2007]. Fuel costs are computed separately by multiplying the fuel burn rate of

6See [Ferguson, 2011] for a detailed description on how the average fare is computed.
7Direct costs are the total operations cost minus the fuel operations cost divided by total flight time (in

hours) as reported in BTS P52.
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the aircraft,8 fuel prices per gallon and total airtime of the flight.

• Weight based landing fee (W) is the fee charged by airport per landing. Different

airports have different landing fee rates per 1000 lbs., therefore, this cost is computed

by multiplying the aircraft weight (more specifically Maximum Landing Weight or

MLW rounded up to 1000 lbs.) to these landing fee rates.

• Congestion Fee (λ) of a flight is the amount the airline is charged if it chooses to fly

in a congested time period. This is the cost calculated by the optimization model.

For any time period where there is no congestion, the congestion fee is zero.

4.6 Cost of Delay Model

This section summarizes the model from the previous chapter that is used to compute

the cost incurred by airlines in case a flight is delayed. The model evaluates costs of

delay for each of the different segments of flight (gate delays, taxi-out/taxi-in delays, and

airborne delays). The model is an additive model that considers fuel burn rates, crew costs,

maintenance and other costs (including baggage, ticketing and gating). The cost factors

varied based on the length of the delays, where short delays were considered to be those

less than fifteen minutes, while long delays were those over sixty-five minutes.

The additive model has the following parameter values:

Cdelay = cfuel × fuel burn rate× fuel price

+ ccrew × crew cost

+ cmaintenance × maintenance cost (4.1)

+ cother × other cost

8Fuel burn rate is the ratio between total fuel issued (in gallons) and hours of flight time, both reported
in BTS P52.
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Table 4.1: Coefficients for Airline Cost of Delay Model

Cost Factor
Gate Taxi Airborne

15 min 65 min 15 min 65 min 15 min 65 min

Fuel 0 0 1 1 1 1

Crew 0 0.46 0 0.43 0.01 0.46

Maintenance 0 0 0 0 0 0

Other 0.21 0.21 0.12 0.12 0.1 0.1

All cost data is in dollars/minute. Table 4.1 contains the coefficients for each cost component

and segment of flight. Note that the coefficients are independent of aircraft type. However,

each of these coefficients is multiplied by a corresponding cost that is aircraft dependent.

Thus, the model computes delay costs that are aircraft-type specific and will vary with

changes in fuel, crew and maintenance or other costs (as reported by the airline in the BTS

database).

For delays of less than 15 minutes, 15 minutes cost factor is used; for delays greater

than 65 minutes, 65 minutes cost factors are used; for delays between 15 and 65 minutes, an

interpolation is done using two data points. The basis of this modeling effort uses the short

and long delays because those are the two categories found in the Euro Control Report upon

which this model is based [Cook et al., 2004]. Figure 4.3 shows the functional diagram of

this model.

Note that for the congestion pricing model in this study, all the delays are taken at the

gate of departure airport; therefore the model only uses the cost of delays at gate segment.

A more detailed description of how this model was created is provided in the Chapter 3

4.7 Optimization Model

The optimization model is the core of the congestion pricing model, which maximizes cu-

mulative profit for all flights subject to capacity constraints. Profit is computed using the

revenue/cost model defined above, while the capacity constraints are for each time window,
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Figure 4.3: Functional diagram for Cost of Delay Model

the number of flights that are flown is not greater than the capacity of that time period.

In the case of a non-congested period, the congestion price will be zero and all flights will

opt to fly. In cases where there is an insufficient capacity, some of the flights will choose

to delay or cancel the flights because the congestion price announced will make the flight

unprofitable to be flown in this time period. These flights will be then be rescheduled at

the next available time window, with the delay cost added to their operating costs. These

delayed flights compete in these future time windows with the flights scheduled to depart

in that time window. The optimization model considers the entire day and takes a global

view of all flights during all time periods, choosing the time period to fly each flight so that

the flight incurs its maximum profit. If no such time period provides a profitable option,

the flight is cancelled. An additional constraint regarding the flight cancellation is added,

i.e., how long a flight is allowed to be delayed before it is cancelled by the model despite

still being profitable. This stopping criterion reflects the preferences of airlines to cancel a

flight early in order for other, more important flights to experience less delay. At the end,

the model outputs the new schedule for all of the flights as well the computed congestion

prices for each time window.
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4.7.1 Mathematical Formulation

Using following sets,

• Sets:

T : Time Windows (Periods/Bins)

F : Flight segments, indexed by k where 1 ≤ k ≤ |F|

Yk : copies of kth flight with scheduled time window t(k) ∈ T and multiple

actual time windows j ∈ T where t(k) ≤ j ≤ t(k) + lk

Y :
∪
k

Yk Union of copies of all flights

• Indices:

j : Time periods j ∈ {1, . . . , |T |}

k : Flights k ∈ {1, . . . , |F|}

• Parameters

Rk : Revenue of kth flight

Ok : Operating cost of kth flight

W k : Weight-based landing fee of kth flight

t(k) : scheduled arrival time of kthflight t : F → T

dkj : delay cost per minute of kth flight with delay of “15× (j − t(k))”

minutes (From delay model)

lk : number of time windows the kth flight can be delayed.

t(k) + lk ≤ |T |
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• Variables

xk :=


1 kth flight flown

0 otherwise

(4.2)

ykj :=


1 kth flight is flown in time window j ∈ T with delay of (j − t(k))× 15 minutes

0 otherwise

(4.3)

λj : Congestion fee at time window j ∈ T (4.4)

• Formulation of Problem P

max
∑
k∈F

[
Rk −Ok −W k

]
× xk −

∑
k

t(k)+lk∑
j=t(k)

[
15(j − t(k))dkj + λj

]
× ykj (4.5)

s.t.

t(k)+lk∑
j=t(k)

ykj = xk ∀k∈F (4.6)

∑
k

ykj ≤ Cj ∀j∈T (4.7)

xk ≤ 1 ∀k (4.8)

ykj ≤ 1 ∀k∀j (4.9)

For each kth flight (defined by variable xk), there is some original scheduled time window

t(k) ∈ T , and some actual time window j ∈ T when it is flown. Therefore there are lk

copies per flight (defined by variable ykj ) and the model selects the variable with a j ∈ T
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that indicates the time window when it is most profitable to fly.

The objective function maximizes total profit over all time periods and flight segments.

It has both fixed costs (operating cost per flight and landing fees) defined in terms of xk

and variable costs (delay cost that is based on j − t(k) per flight and congestion cost based

on j ∈ T determined by the solution) defined in terms of ykj .

The first constraint (4.6) indicates that for each flight xk ∈ F , at most, one copy of the

flight variable (ykj ∈ Yk) can be non-zero in the final schedule indicating that the flight was

assigned a slot j ∈ T and was delayed for 15× (j− t(k)) minutes. The case where all copies

of the flight variables are zero indicates that the flight is cancelled for the day and xk = 0 .

The second constraint (4.7) is the capacity constraint per time window j ∈ T . It assures

no more than cj flights will arrive at the airport (based on their departure time at originating

airport).

The third (4.8) and fourth (4.9) constraints indicate that xk and ykj can take a value of

at most 1.

In reality, both the x and y variables are binary variables. It is later shown that the lp

solution will yield integer solutions.

4.7.2 Running the Optimization Model

Note that the optimization model described is non-linear, because the objective function

has a quadratic term (λj × ykj ) in it. A technique similar to Bender’s decomposition is used

in order to solve the problem. At each iteration, λj is fixed and the model is solved. Then

values of λj are updated and the model is solved again for optimality. This is repeated

until the value of the objective function cannot be further improved. Adding a superscript

to the λj , i.e. λv
j , where v indicates the number of iterations, the model is initially solved

by setting λ0
j = 0 ∀j .

Thus, the problem P is solved with λ=
j 0 and the dual prices associated with each capacity

constraint 4.6 are obtained. The dual prices measure the value to the objective function
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1: Initialize λ0
j := 0

2: v := −1
3: repeat
4: v := v + 1
5: Run the Optimization Model with λv

j

6: λv+1
j := get new dual prices

7: until λv+1
j ̸= λv

j

Figure 4.4: Procedure to compute Congestion Prices

Figure 4.5: Functional diagram of the Congestion Pricing Model

of adding an extra unit (an additional slot in this case). Note that it is also the profit

generated by the next flight that can be added to this time window, hence by fixing this

dual price as the congestion fee, the next flight becomes non-profitable and is delayed by

one time window. Figure 4.4 shows the pseudocode for the computation and convergence

of the congestion prices.

101



4.8 Working of the Model

The Congestion Pricing Model (CPM) is the combination of all the components defined in

the previous sections. Figure 4.5 shows the functional diagram of the model. The inputs to

this model are: original schedules (both from ASPM and BTS OnTime) where each flight

belongs to some scheduled arrival bin (in terms of 15 minutes time bin), the capacity limits

for each time period at a given airport, and revenue and costs for each flight.

The preprocessing stage combines the two different schedules (from ASPM and BTS

OnTime) into a single schedule and then determines the revenue and costs associated with

each flight.

Once each flight is assigned a revenue and cost, the optimization model is invoked. Em-

bedded in the model are the associated delay costs (based on the cost of delay calculations).

The model determines the choice for each flight that maximizes overall profit. The model

outputs a schedule that satisfies the capacity limits in each 15 minute time bin. Hence, for

each flight, a specified delay and a congestion cost is determined. If the flight is cancelled,

then the model also determines the cancellation cost which is equal to the flight’s profit. It

also provides the equilibrium congestion price for each 15 minute time bin. The congestion

price is zero in cases where there are fewer flights than the capacity of that time window.

In the case of two flights competing for a single time window with same profit, a further

step is considered in the optimization process.

When two competing flights have equal profit, this implies that the linear programming

problem is degenerate. Thus, there are more than m variables having a reduced cost equal

to zero. In this case, any m of these variables can be chosen to be in the solution (i.e.,

flown in this time period). It is noted that such degenerate solutions might result in either

too many or too few flights actually choosing to fly (since the economic response to such a

congestion price for the airline is indifferent). Thus, one must learn over time whether the

congestion price should be slightly increased or decreased when such degeneracy occurs.
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4.9 Assumptions of the Model

Apart from the flights that are fixed to be either flown or cancelled as mentioned in Section

4.4, some other assumptions of the model are:

• The airlines behave rationally, i.e., when delays and cancellations must occur, the

airline will prioritize flights based on profitability.

• The only network effects considered in the model are: (i) assuring flights overnight

where scheduled, and (ii) adding extra costs associated with missing a turnaround

time for the follow-on flight.

• The model examines airports separately and delays flight at the departing airport

based on the capacity at the arriving airport. This is in accordance with the current

system where the Ground Delay Program (GDP) only deals with the arriving flights

at an airport.

• Delays only occur at the gate of the departure airport. This means that whenever a

flight is rescheduled, it is allowed to stay at the gate at the departure airport and no

extra cost is imposed on the flights. In reality, an airline may incur additional costs

because of gating congestion issues.

4.10 Variations to the Basic Model

The two variations added to modify the model that consider, issues with overnight flights

and the addition of the cancellation cost model are discussed below.

4.10.1 Network Effects due to Overnight and Departure Segments

In general, the model assigns arrival slots to flights based on their profitability. However,

for some airlines the need to begin the next day with all aircrafts positioned as planned

may have more value than the profitability of a single flight. Therefore, for flights that were

scheduled to remain overnight at an airport, the airlines may be willing to incur additional
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delay and/or congestion costs even if these costs result in negative revenue. Since such

decisions will impact the overall congestion of the system, the model must consider these

decisions when determining the congestion costs of each time period.

Similarly, there are certain flights for which, if the arrival time is after a specific time

period, there will be a significant impact on another (possibly highly profitable) flight or

flights. Therefore, the delay cost of the flight is not the only penalty incurred by the airline;

there may be additional costs because its next departure segment may be delayed due to

the unavailability of an aircraft or its crew.

Adding these extensions in the model is fairly straightforward. For the overnight flights,

xk is fixed to be one. This means that the flight will arrive at the airport regardless of the

delay costs (i.e., one of the ykj to be equal to 1). In the worst case, it will get the slot with

greatest delay possible (largest value of j).9

A second mechanism for allowing these flights to overnight at the appropriate airport

is to extend arrivals into the early morning hours of the next day (at airports allowing late

arrivals). It is termed as the “sink time window”; at the end of the day, the model can allow

any overnight flights to choose this time window when all other time windows have more

profitable flights that use up the available capacity. The cost of using this sink time window

is set high in order to encourage flights to choose alternatives over the extreme case.

In order to add a sink time window for each of the overnight flights, calculate the delay

cost from its scheduled time t(k) to the time window after the end of day 97 (or 105).

Introduce a new variable ok for overnight flights. This variable is also added into constraint

4.6 for all overnight flights k; this implies that if none of the ykj variables are one, since

xk is one, ok will be one. For the congestion price, profit of the overnight flight k and a

penalty of $50 is chosen. This will prevent the flight from choosing the sink if any other

slot is available.

For simplicity, it is assumed that any flight that cannot be linked to a departure segment

and arrives after 5 pm that day is considered to be an “overnight flight.”

9Depends on lk determined by the design of experiments.

104



Specifically for flights with departure segments later in the day, search for the time

window when the next departure segment for that aircraft is scheduled to depart. If the

arrival flight arrives on or fifteen minutes before its scheduled departure time, no penalty is

charged. Otherwise, an additional delay cost for each fifteen minutes of delay on the ground

is added to the delay cost of the flight. It is noted that the delay cost calculations are the

same since the aircraft type is identical. However, the magnitude of the delay may increase

nonlinearly depending on the delay.

Adding this constraint into the optimization model requires adding a few more param-

eters to the optimization model. First, extra information regarding the kth flight is added,

i.e., if there exists a departure segment flight, its scheduled departure time, this is termed

as dep(k) : departure time of kth flight dep : F → T . If this is 0, the flight does not have

a departure segment. Second, an extra variable depdelay(j, k) is introduced that captures

the delay cost only if the departure segment is delayed, if jth time window is assigned to

kth flight. Mathematically,

depdelay(j, k) :=


1 if j ≥ dep(k)

0 otherwise

(4.10)

Finally, with these two parameters, an additional term is subtracted from the objective

function to account for the departure delay cost incurred by flight operators in case the

corresponding ykj variable is selected. A minimum turn around time of 2 time windows of

delay is also added when computing the delay cost of the departure segment; this is based

on the assumption the next flight cannot depart until 30 minutes after it arrives.

−
∑
k

t(k)+lk∑
j=t(k)

[
15× depdelay(j, k)(j − dep(k) + 2)dkj+2

]
× ykj (4.11)
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Matching Tail Numbers

All that remains is to find a departure segment later in the day (if it exists) for each arriving

flight k. If there is one, set that to be the dep(k) of flight k. If not, if the flight is scheduled

to arrive after 5 pm, then fix its corresponding xk variable to be one in the model, or else

do nothing.

The only way to match such a pair of arrival and departure flights is by using tail

numbers, that is, for each arrival flight, find a departing flight that belongs to the same

airline, is the same aircraft (using tail numbers), is scheduled later than the scheduled

arriving time of the arrival flight with some turn around time. However, using the publicly

available databases, this is not an easy task, since for most of the flights, tail numbers are

either null or equal to the flight numbers. Heuristics have been applied to match these

seemingly different sets of flights with multiple iterations by relaxing constraints. For the

turn around time, a greater than 30 minutes of turnaround time (> two time windows)

is assumed between the arrival and departure segment. Following are the queries (in the

mentioned order) used to match the flights between arrival and departure flights.

1. Query1 Join by date, airport, carrier, where turnaround time is > 1, aircraft type are

equal, tail numbers are equal and both are domestic flights.

2. Query2 Join by date, airport, carrier, where turnaround time is > 1, aircraft type are

equal, tail numbers are equal and both are domestic flights.

3. Query3 Join by date, airport, carrier, where turnaround time is > 1, aircraft type are

equal, tail numbers are equal and one of them is domestic while other is international.

4. Query4 Join by date, airport, carrier, where turnaround time is > 1, aircraft type are

similar.10 and both are domestic flights.

After invoking each query, a manual check is performed to remove the duplicates or one-

to-many matchings. Turnaround time is the difference between scheduled arrival time of

10Similar indicates the cases where there are multiple codes used for the same aircraft type.
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arriving flight and scheduled departure time of departing flight in time periods of 15 minutes,

so “> 1” condition means at least 30 minutes of turnaround time between these flights is

scheduled.

4.10.2 Cancellation Costs

The original optimization model did not have any cost associated with the cancellation of

the flight except for the lost profit of the flight. Flights are forced to be cancelled within l

units of time periods, in case they are not assigned a slot. The rationale behind this concept

is that no airline is willing to keep its flights delayed at the gate for very long periods of

time. This is because the airline needs to reschedule the passengers and because it needs

the use of the aircraft. Therefore, if a flight continues to incur delay costs, it will eventually

be cancelled.

An alternative method for determining whether to cancel a flight is to consider a can-

cellation cost (and keep all revenue associated with the flight). The idea is that an airline

will need to pay for reconnecting passengers to their final destination, but the revenue ob-

tained from each passenger is kept by the airline. Since there is currently no concrete model

available to compute cancellation costs, a rule-based working model for cancellation costs

is created.

For each flight k, if it is cancelled, the carrier will incur some cost because it must

reschedule passengers onto other flights. It was estimated to be $100 per passenger. The

number of passengers PAX(k) is computed by multiplying load factors with the seating

capacity of the aircraft flight k is assigned. It will save all the fuel costs associated with that

flight, since this flight will not be flown. In order to accomplish this, another parameter

is added, fuel(k), which is equal to the total fuel cost per flight k. This is the fuel burn

rate of the aircraft multiplied by the total airborne time multiplied by the fuel price.11 The

cancellation cost therefore becomes:

11$2.04 per gallon for Summer 2007.
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−
∑
k∈F

[
(100PAX(k)− fuel(k))(1− xk)

]
(4.12)

By adding this extra cancellation cost to the objective function, the optimization model

takes into consideration the penalty of cancellation in the same fashion that it treats delay

costs. lk can now be set such that t(k) + lk ≤ 96 (or 104). This way, the model can take

into account the cancellation costs.

It is acknowledged that this may be a rather crude model to compute cancellation costs

and in reality, cancellation costs often depend on a number of different parameters with

several propagating effects. This approximation of a cancellation cost model is used in

order to test the sensitivity of the results to such costs.

4.11 Application in Ground Delay Program (GDP)

In order to use this model in a real GDP scenario, the following occurs. Whenever a GDP

is announced at any airport, the reduced capacities are provided to the CPM model. The

model will then produce the congestion prices for the entire day starting at whatever time

Air Traffic Flow Management (ATFM) indicates. The congestion prices will be announced

to airlines who will then decide whether to pay the congestion price or delay the flight until

the next time window. In the case where the congestion prices did not produce desirable

results, the model can be rerun to reflect the change in capacity that has occurred due

to the responses provided. The process will be run again with the updated information

about the airline’s decision (changed schedule) as well as any changes in weather conditions

and resulting capacity changes. When there is more capacity than anticipated, future

period congestion prices could be reduced through a “learning model.” When capacity is

further limited because more flights chose to accept the congestion price or because weather

conditions worsened, then capacity is reduced to reflect the reduced capacity.
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4.12 Summary

This chapter describes the complete congestion pricing model. The first section compares

the model with approaches mentioned in the literature review. The second section de-

scribes the idea using the illustrative example. Next, all the data sources along with how

the data is processed in order to facilitate the model is described. Later, all the compo-

nents of the model are described in detail, and finally, how they all are combined in order

to compute the congestion prices and the new reduced schedule per day per airport. As-

sumptions/limitations of the model are then mentioned, some of which can be relaxed in

future study to analyze different behaviors. Finally, some of the extensions to the model

are discussed along with the procedure to embed them.
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Chapter 5: Design of Experiments

This chapter discusses the design of experiments that have been performed to illustrate how

the congestion pricing model could work. In the first part of this chapter, details of the data

sample are provided used to perform the experiments. Section 5.2.2 describes in detail the

design of experiments, the alternative approaches used for comparison with the new model,

the performance criteria measured, and the input parameters varied for sensitivity analysis.

5.1 Data

To test this model, the data chosen is from one of the most congested periods in recent

times, i.e., Summer 2007. The analysis examined every day in July 2007 in which a Ground

Delay Program (GDP) was implemented. A variety of airports with varying characteristics

were chosen, for e.g., an East coast versus West Coast airport, a slot controlled airport

versus a non-slot controlled airport, a non-hub airport vs. a dominant carrier airport, etc.

The following five airports were chosen:

• Boston Logan Airport (BOS): BOS is the only airport where the airport authority

has the right to implement a Congestion-Pricing-based allocation scheme. No single

airline has a major share at the airport and so, it is a non-dominated airport.

• Newark Liberty International Airport (EWR): EWR is another slot-controlled airport

with the limit set to 81 operations per hour. However, this limit did not exist in 2007.

It is one of the hub airports for Continental Airlines (COA) which runs its interna-

tional flights across the Atlantic Ocean from this airport.
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Table 5.1: Statistics for the data

Airport
Number of Total Exempted Removed Flown Cancelled

Days Flights Flights Flights Flights Flights

BOS 7 3599 285 235 3012 67

EWR 13 6722 645 372 5310 395

LGA 10 5555 185 357 4788 225

PHL 5 3017 145 150 2695 27

SFO 16 7680 743 444 6465 28

Total 51 26573 2003 1558 22270 742

• LaGuardia Airport (LGA): LGA is one of the slot-controlled airports, i.e., there is a

limit as to how many flights can be scheduled at any given time period. Currently

(since 2009), it is 71 operations (including both arrival and departure) per hour. In

2007, it was set to 75 operations per hour. It has several different airlines competing

for the resources with similar proportions of flights at this airport. LGA has almost no

international traffic and most of its flights connect New York City to other domestic

cities.

• Philadelphia International Airport (PHL): PHL is a non-slot controlled airport and

an international hub for U.S. Airways (USA). However, there is also a significant pres-

ence of a low-cost carrier, i.e., Southwest Airlines (SWA), at this airport.

• San Francisco International Airport (SFO): SFO is the only west coast airport in this

study. It is also a non-slot controlled airport with a proportionally large amount of

international flights, most of which connect the United States to the Far East. This

airport is also a hub for United Airlines.

Finalizing the time period and the airports, a total of 51 airport days were chosen when

the GDP was in effect in at least one of these airports during the month of July 2007.
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Table 5.2: Flight statistics for airports studied

Airport
Total Profit OnTime Delayed Cancelled
Flights ($) Flights (%) Flights(%) Flights (%)

BOS 3599 31,931,538 49% 49% 2%

EWR 6722 61,570,344 46% 47% 7%

LGA 5555 36,565,098 49% 47% 4%

PHL 3017 20,479,061 52% 47% 1%

SFO 7680 95,865,652 35% 65% 0.4%

Table 5.1 provides further detail on the data regarding the number of domestic flights,

exempted (fixed to be flown) flights and removed flights. The last two columns show the

historical status of the remaining flights. These are the total number of flights (i.e., 23,012)

that are provided as input to the new system. The exempted flights are either the flights

belonging to international carriers, have international origins, or are non-commercial flights

(e.g., military, freight, etc). Slots for these flights are removed from the capacity (as reserved

caps). In addition, there is a collection of “removed flights.” They are one of three types: (i)

either flights cancelled due to mechanical reasons or other airline issues, or (ii) the diverted

flights, or (iii) General Aviation (GA) flights.

Table 5.2 provides the detail of the flights used for the experiments. As shown, around

50% of the flights were on time (including ones that were delayed by no more than 15

minutes), except at SFO where the ontime percentage is lower. Less than 10% of the flights

were cancelled at any airport and the total percentage of cancelled flights is 3.22% or 742

flights out of 23,012 total flights. However, there were many delayed flights.

Figure 5.1 shows the flights by airlines (only airlines with > 100 flights are shown).

During the days studied, most of the airlines have around 50% of their flights on time;

Frontier (FFT) has only 30% while United (UAL) has approximately 35%.

Table 5.3 shows the landing fee ($ per 1000 lbs.) for the airports chosen for the study.
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Figure 5.1: Historical status of flights by airline at 5 airports

Table 5.3: Weight based landing fee per 1000 lbs, Summer 2007

Airport BOS EWR LGA PHL SFO

$ per 1000lbs. $3.77 $5.83 $6 $1.63 $3

5.2 Design of Experiments

This section describes the input parameters (later used as variables for the analysis) of the

new system, the alternative approaches against which the new system will be compared and

the performance metrics used for the comparison.

5.2.1 Input Parameters

For the designs, three different input parameters are chosen that will be varied while running

the model for a single airport day.

• Capacity: As discussed before, capacity is defined to be a limit at each airport, on

the number of flights allowed to arrive in 15 minute time bins. Generally at airports

113



it is announced as the airport arrival rate (on an hourly basis). It is provided by the

ASPM Airport Data Dictionary [ASPM, 2007]. However, as observed for the current

data, it is deemed too high at times even when a Ground Delay Program (GDP)

been implemented at an airport. Since the new model is mainly based on capacity

constraints, a slight change in the capacity beyond a certain limit is likely to propagate

to a proportionally larger change in the congestion prices as well as the total amount

of delays incurred. Therefore, four different scales of capacity, based on published

airport capacity benchmarks [FAA, 2004] are chosen for all the airports. This report

provides three different rates for the hourly number of operations (both arrival and

departure) based on three different weather scenarios, i.e., “optimum”, “marginal”

and “IFR”. Since, the fidelity of the model is 15 minute time windows and the data is

given in hourly time windows and includes both arrival and departure slots (4 fifteen-

minute periods × 2 types of operations [arrivals and departures] = 8), the data is

rounded to the closest multiple of 8 and then divided by 8 to get a benchmark on

15 minutes of arrival capacity. In the case of PHL, however, these benchmarks were

found to be higher than the actual schedule from ASPM [ASPM, 2007], therefore all

the capacity scenarios were reduced accordingly.

Another value for capacity is also added, MarginalLow (ML), based on the Marginal

values and IFR values; between 2 pm to 7 pm, the capacity is set to the IFR limit,

since most of the GDP’s in the data take place later in the afternoon. For the rest of

the time period, marginal capacity limit is used.

• Cancellation Policy (lk): lk defines the number of time periods a flight is allowed to be

delayed before the model cancels the flight. In the experiment, the impact of allowing

(i) up to a 3 hour delay (or 12 time windows),1 (ii) up to a 5 hour delay (or 20 time

windows), or (iii) allowing an unlimited amount of delay but including a cancellation

cost (as described in Chapter 4) were tested.

1Similar to tarmac delay rule.
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Table 5.4: Different capacity parameters at airports (per 15 minutes)

Airport
Capacity Scenarios

IFR (L) MarginalLow(ML) Marginal (M) Optimal (H)

BOS 6 8/6 8 11

EWR 8 10/8 10 11

LGA 9 10/9 10 11

PHL 9 10/9 10 12

SFO 9 10/9 10 12

• End of Day (EOD): For all of the days, the model starts at 12:00AM and runs until

11:59pm. Thus, there are having a total of 96 time windows (each of 15 minutes)

in a day. To handle late arrivals, the flights are allowed to spill over for 2 more

hours (2:00AM next day) into the following day (104 time windows). Capacity for the

additional time windows is the same as for the last time window of the actual day,

and as there are no new flights scheduled at this time (since the model is set to work

for only one day), the current day flights are allowed to spill over to the next day.

5.2.2 Alternative Approaches

To test the model, two alternative approaches, Ration-by-Schedule (RBS) and Ration-by

Distance (RBD), that are well studied in the current literature are chosen so that the results

of the new model can be compared against their results.

• Ration-by-Schedule(RBS): Ration-by-schedule is fully-described in Chapter 2. Basi-

cally, it assigns the flights based on a first-scheduled, first-served basis, i.e. priority

is given to the ones that were scheduled earlier. Flights at the beginning of the GDP

period (or more accurately, congested period) experience lesser delays compared to

ones at the end.

• Ration-by-Distance(RBD): Similar to Ration-by-Schedule (RBS), this approach also

assigns slots based on some ordering of the flights, however, in this case, priority is

given to long-haul flights over short-haul flights. A greater circle distance (GCD) is
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used to sort flights. Similar to the RBS approach, substitution and compression can

be performed after the RBD approach if cancelled flights exist in the system.

For either of these approaches, the modified version of the code developed by [Manley,

2008] is used. The modifications relate to exempted flights. For each GDP event, her code

determines what flights are exempted from the GDP. In the case of RBS, it looks at the

sector information and determines whether any flight belongs to the exempt sector and if

so, that flight is assigned the earliest available slot. International flights are also handled

in a similar fashion. For current experiments, since only commercial domestic flights are

used, all the international flights and military flights are exempted beforehand by removing

those slots (“Reserved Caps”) from the overall capacity. Similarly for RBD, it is assumed

that no long haul flights are exempted.

5.2.3 Performance Metrics

Finally, to determine performance metrics the major stakeholders and their interests are

considered:

• Airlines: Airlines are one of the major stakeholders, and are the only stakeholder

that in any GDP, make the decision of how to re-order flights during a GDP. For this

analysis, the following metrics are chosen with respect to an airline’s performance:

– Final Profit: For each flight, the final profit is recorded after all of the fixed costs

(e.g., operating costs) as well as the variable costs (e.g., delay cost and congestion

price) are removed from the revenue of the flight. There are no equivalent costs

for alternative rationing schemes except for the delay costs incurred by a flight

and the cancellation cost (based on the cancellation model introduced in the

previous chapter), in the case of cancellation. It is noted that a congestion pricing

scheme, if implemented, would likely remove padding from the schedule. The
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resulting profitability of a congestion pricing scheme is therefore underestimated.

For a noncancelled flight:

Final Profit = Revenue - Fixed Cost - Delay Cost - Congestion Cost

For a cancelled flight:

Final Profit = Revenue - Fixed Cost - Cancellation Cost

– Congestion Pricing: A congestion price is recorded for each congested time pe-

riod.

– Seats OnTime: Seats OnTime is an important criteria for airlines that care about

their ontime statistics. The number of seats (which is a surrogate for passengers)

able to reach their destination without any scheduled delay is recorded.

• Air Traffic Flow Management (ATFM): Any policy to be implemented requires that

the ATFM policy makers agree to use the allocation scheme. The following are the

performance metrics ATFM is more interested in:

– Number of Flights: Flight throughput is recorded since, from an airport or the

Air Transportation Management(ATM) perspective, throughput is as important

as the revenue generated.

– Flight Delay: Flight delay is recorded for each flight in the new approach (in

terms of difference between j and t(k) for kth flight). In the alternative ap-

proaches, it is computed from its scheduled time to its assigned controlled time

of arrival (CTA).

• Passengers (PAX): The major performance metrics of concern to passengers are:

– Number of PAX Flown: PAX throughput is most important criteria for passen-

gers. Therefore PAX throughput is recorded, and if the flight gets cancelled, an
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algorithm is used to relocate PAX from that flight to other flights of the same

airline.2

– PAX Delay: PAX delay for a delayed flight is a multiple of its flight delay,

however, the PAX Delay for a cancelled flight is a function of how early in the

day the flight was scheduled. Earlier flight operators have greater opportunities

to relocate passengers to other flights that day. If a passenger is not relocated,

then a delay until 6 am next morning is assumed and accounted for.3

– PAX OnTime: PAX OnTime is another important criteria for passengers. Sim-

ilar to Seats OnTime, the number of passengers who were able to reach their

destination without any scheduled delay is recorded.

– Cancellations: The number of cancelled flights is recorded.

In addition to the aforementioned performance metrics, proportional equity with respect

to airline and aircraft delays has been computed for the congestion pricing approach. In

terms of runway access, equity measures whether costs or benefits are distributed fairly

among the users when the arrival demand exceeds the capacity at an airport [Hoffman and

Davidson, 2003].

Proportional Equity with respect to airline delay4 is defined as:

Proportional Equity for airline delay = − log10

(
airline delay

total delay
/
airline flights

total flights

)
(5.1)

Similarly, for aircraft delay:

Proportional Equity for aircraft delay = − log10

(
aircraft delay

total delay
/
aircraft flights

total flights

)
(5.2)

2See [Manley, 2008] for details.
3As shown in [Manley, 2008].
4Logarithm is used to reduce the range and the negative sign is to convert the graph showing preferable

airlines on the top.
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Table 5.5 shows the overall picture of the statistics gathered for each airport and ap-

proach.

5.3 Summary

This chapter described the design of experiments used to observe the performance of the

proposed model. The input parameters are identified and the metrics of performance are

defined. The next chapter discusses the results produced using the design of experiments

explained in this chapter.
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Chapter 6: Results

This chapter provides the results of the comparative analysis, and details the design of ex-

periments described in the previous chapter. Section 6.1 shows the results when comparing

the congestion pricing approach with the alternative approaches mentioned. Further statis-

tics are then provided in Section 6.3 regarding the congestion prices as well as analysis of

airline equity issues. Finally, Section 6.4 summarizes the results.

6.1 Design of Experiments: Results

In the previous chapter, three different input parameters are mentioned that can be used to

perform sensitivity analysis to the congestion pricing approaches as well as other approaches.

The first of the variables types is the End of Day (EOD) parameter which increases

capacity at the end of the day for all three approaches. Flights that go beyond the last

time window will be considered cancelled by all the approaches. The second variable is the

capacity. For this variable, the capacity is set at four different levels. Finally, the third

variable to consider is the cancellation policy. Cancellation policy (l) defines how long a

flight is allowed to be delayed before it gets cancelled.

Tables 6.1, 6.2, 6.3 and 6.4 show the final results of the design of experiments across all

airports. Analysis of individual airports is discussed in Section 6.2.

Looking at the overall results, it is observed that the results are intuitive and support

the theory that congestion pricing can allocate the limited capacity to those that value it

the most. The following discussion looks at each of the performance metric separately.
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Figure 6.1: Final profit (all airports)

Figure 6.1 shows the final profit gained by all three different approaches. For optimal

capacity (H), congestion was at a minimum and therefore there were few time periods

where a congestion cost was imposed. Similarly, very few flights were delayed or cancelled;

congestion pricing delayed 7% of the total flights and 0.1% flights were cancelled. RBS and

RBD approaches delayed 22% and 14% flights respectively and 0.1% and 0.2% flights were

cancelled respectively. Hence, the variable costs were low at such capacity levels resulting in

a small amount of lost profit with any of the three approaches. At marginal levels (M), again

most of the profits are maintained, however compared to optimal capacity level, the loss in

profit is marginally higher, since the variable costs of congestion and delays have gone up.

Particularly, the congestion price is costing more than the other two approaches; this is due

to the extra congestion cost incurred by the carriers that is now charged by the governing

authority. Other input parameters do not vary the results much at these capacity levels.

However, for the Marginal Low (ML) and IFR levels (L) of capacity, all three approaches

lose profit, with the congestion pricing approach losing the most (15% in cases where End of
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Day (EOD) is set to midnight as compared to the alternative approaches). This is because,

due to highly congested time periods, the congestion cost at those time periods have gone

up resulting in a larger increase in variable costs. In RBS and RBD approaches, flight costs

as well as cancellation costs are the reasons for the drop in profit. Changes in cancellation

policy do not seem to have much effect except when a flight is allowed to be delayed more

than 5 hours with a cancellation cost (case C). In this case, for RBS and RBD, the delay

costs increase but in the cancellation case, the congestion pricing chose to cancel more

flights since it is cheaper to do so compared to operating them (recovering profit levels

similar to alternative approaches). Allowing flights to be delayed for 2 more hours at the

end of day (case 104) allows the congestion pricing approach to recover some of the profit.

The other two approaches do not vary much by other input parameters, except when there

are lesser resources, RBD performs better because in RBD, when short haul flights run

out of a resource, they get cancelled as opposed to all flights having equal access in RBS.

However, since short haul flights are less profitable than long haul flights, RBD recovers

more profit comparatively.

Figures 6.2 and 6.3 show flight throughput and passenger (PAX) throughput respec-

tively. Again, as anticipated, except in the cancellation model cases, the CP approach

performs better or within 2%-4% of RBS and RBD figures by these measures. This is be-

cause it maximizes profit by operating more flights and therefore, flight throughput is better

than other approaches. However, in the cancellation cost models, operating a flight becomes

more expensive than incurring a cancellation cost. This results in an increased number of

cancelled flights and loss in passenger throughput. The impact is especially significant dur-

ing IFR capacity level (L). Adding two more hours of capacity (case 104) increases flight

throughput. PAX throughput has a similar behavior for the congestion pricing approach.

However, for the other two approaches, RBS is better (or similar) in flight delay statistics,

but performs badly with respect to passenger throughput. This is because generally long

haul flights are larger fleets with higher load factor, and in RBD more passengers fly even

though RBS operates more flights.

127



Figure 6.2: Flight throughput(all airports)

Figure 6.3: Passenger throughput (all airports)
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Figure 6.4: Flight delay in minutes (all airports)

Figures 6.4 and 6.5 show flight delay and passenger (PAX) delay respectively. For flight

delays, CP performs better when the capacity levels are high (greater than 50% better than

other approaches) or when the cancellation cost model is used. For the lower capacity levels

(i.e., ML and L), RBD performs better than others (in some cases, RBD performs three

times better than the CP approach). However, for PAX delay the CP approach is better.

This is because there is a large number of cancellations by the RBD approach, having better

performance for flight delays, but also large a number of stranded or relocating passengers,

thereby increasing passenger delay. RBS performs worse in both performance metrics. The

RBS approach tries to distribute delay evenly to all flights, hence all flights are equally

delayed, irrespective of their profitability or route. CP performs very well when looking at

the passenger delay. Passengers delays were reduced on average from 50% in case of RBD

to approximately 80% with respect to RBS in worst scenarios.

Figure 6.6 shows the number of cancelled flights. Intuitively, reduction in capacity will

increase cancellations due to lack of resources. Therefore, at IFR levels the cancellations
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Figure 6.5: Passenger delay in minutes (all airports)

are highest. In the case of the restrictive cancellation policy, RBD cancels more flights

because it delays regional flights which after 3 hour or 5 hour delays are cancelled by this

approach. In the third case, RBS and RBD incur the same number of cancellations. CP

has the least number of cancellations in the restrictive cases, greater than 50% less than the

RBS approach and within 20%-40% with respect to the RBD approach. This is because

it optimizes the slot allocation by maximizing profit. Cancelled flights mean lost profit.

However, when compared to incurring a cancellation cost in the cancellation model case, it

becomes more profitable to cancel a few flights while reducing the overall congestion. In

one of the IFR capacity scenario, 2% cancellations recovered almost all of the profit. The

restrictive cases of cancellation policy do not differ much by allowing two more hours of

delay.

Figures 6.7 and 6.8 show the number of seats on time and number of passengers on time

respectively. In the optimal capacity scenario (H), the CP approach performs 20% better

than the RBS approach and 10% better than the RBD approach, however, in all other
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Figure 6.6: Cancelled flights(all airports)

Figure 6.7: Seats ontime (all airports)
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Figure 6.8: Passengers ontime (all airports)

capacity scenarios, the RBD approach performs 10%-20% better than the CP approach.

However, the CP approach gives better PAX throughput, indicating that even if not many

passengers are ontime, most passengers eventually reach their destination when the resources

are allocated based on the CP approach. RBS performs uniformly worse than either RBD

or CP in both of these performance metrics, implying that, at least for passengers, RBS

performs poorly. PAX delay is evenly distributed with CP approach.

6.2 Airport Analysis

The following shows the results of the comparative analysis for each individual airport.

Similar charts as the one discussed above are presented for each airport separately. In

addition to these charts, a comparison between the revenue generated using a congestion

pricing approach versus revenue generated by weight-based landing fee is also shown.
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Figure 6.9: Final profit (BOS)

6.2.1 Boston Logan Airport (BOS)

Figures 6.9 through 6.16 show the performance measures for Boston airport (BOS). The

profit trend (Figure 6.9) is similar to the aggregate behavior observed for all flights across

all airports.. With the lower two capacity cases, the total profit for all flights is lower for

congestion pricing than in the RBS and RBD approaches due to congestion prices. In the

cancellation model cases (C), the profit goes up, since it is cheaper to cancel flights rather

than flying them.

Figure 6.10 shows the flight throughput at BOS for the selected days in July 2007.

Here, too, the behavior is similar to the aggregate behavior with the CP approach perform-

ing slightly worse in the case of the cancellation model. Figure 6.11 shows the passenger

throughput. At BOS, the CP approach is better in PAX throughput except for the can-

cellation model cases where RBD performs slightly better. RBS, however, gives the worst

performance for passenger throughput despite having better flight throughput.

Figure 6.12 shows flight delays in minutes at BOS. There are no delays in the optimal
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Figure 6.10: Flight throughput (BOS)

Figure 6.11: Passenger throughput (BOS)
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Figure 6.12: Flight delay (BOS)

capacity (H)1. Except for the cancellation model cases, where CP performs better (since

cancelled flights incur zero delay), RBD leads both in Marginal Low (ML) and IFR (L)

capacity scenarios.

Figure 6.13 shows the passenger (PAX) delay metric at BOS. At Marginal (M) capacity

level, RBD outperforms the CP approach slightly, however in worst capacity scenarios, the

CP approach performs better in PAX delay even when using the cancellation model and

reducing the number of flight throughput. RBS performs worse in PAX delay statistic when

capacity levels go beyond Marginal (M) and towards IFR (L).

Figure 6.14 shows the number of cancelled flights at BOS. The CP approach cancels

flights at all cancellation model cases (even in optimal capacity scenario [H]), however, it

cancels the least number of flights when there is a restriction on how long can a flight be

delayed at an airport, implying that it tries to reduce stranded flights compared to other

approaches.

1In the case of the congestion pricing approach, no flight delays are observed, however, for the other two
approaches, a small amount of delay is observed due to a difference in allocation.
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Figure 6.13: Passenger delay (BOS)

Figure 6.14: Cancelled flights (BOS)

136



Figure 6.15: Seats ontime (BOS)

Figure 6.16: Passengers ontime (BOS)
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Figure 6.17: Revenue generated by Weight-Based Landing Fee vs. Congestion Price (BOS)

Figures 6.15 and 6.16 show the number of seats on time and passengers on time statistics.

Similar to aggregate behavior, the RBD performs better with both most number of seats

and passengers on time, however the PAX throughput is poor, arguing that CP is more fair

with respect to passengers, at least at BOS airport.

Figure 6.17 shows the revenue generated by the congestion price versus the revenue

generated by the current weight-based landing fee. At BOS, during the lower capacity

levels (i.e., Marginal Low and IFR levels), the revenue generated by the new approach

will be much higher than the current revenue generated. This means that at BOS the

CP approach would not be revenue neutral if the airport experiences IFR conditions much

of the time. However, if similar to July 2007 actual GDP occurrences, then by removing

weight-based fees (or lowering them to a marginal amount), a CP-based pricing system can

be created that is revenue-neutral.2

2Further analysis on average revenue per day is provided in Appendix E.
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Figure 6.18: Final profit (EWR)

6.2.2 Newark Liberty International Airport (EWR)

Figures 6.18 through 6.25 show the performance metric at EWR airport. Figure 6.18 shows

the total profit of flights at EWR. Except for the restrictive cases with the deadline set at

midnight (EOD = 96) at the IFR capacity level (L), more than 86% of the total profit is

recovered by the CP approach (even with the congestion price). The two anomalies indicate

that a larger number of flights are scheduled later in the day at EWR, therefore, cancelling

all flights after midnight has a greater impact at EWR than any other airport.

Figure 6.19 shows the flight throughput at EWR. The CP approach performs better

except when the cancellation cost model is used. RBD performs worst when flights are not

allowed to be delayed for more than 3 or 5 hours. All three approaches cancelled flights

when there is a midnight (EOD = 96) deadline as compared to 2 am deadline (EOD =

104), referring again to flights scheduled to arrive later in the day at EWR.

Figure 6.20 shows the passenger throughput at EWR. For CP approach, the cancellation

model case chooses to cancel more flights, however, with the midnight deadline at IFR
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Figure 6.19: Flight throughput (EWR)

Figure 6.20: Passenger throughput(EWR)
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Figure 6.21: Flight delay (EWR)

capacity scenario, RBS performs poorly indicating that RBS allocation is bad for PAX

throughput at airports like EWR (with later-in-the-day arrivals). By adding the two hours

at the end of the day (till 2 am), the performance of both CP and RBS improves relative

to passenger throughput, however RBD does not change much.

Figure 6.21 reports flight delays in minutes at EWR. RBD performs better in a flight

delay metric than the congestion pricing approach, except for the cancellation model case,

where more flights are cancelled by the model to reduce overall flight delays.

Figure 6.22 shows the passenger delays at EWR. Here, PAX delay is least in the can-

cellation model case, implying that even though more flights are cancelled, passengers are

able to get to their destinations using alternate flights. The CP approach performs better

than both RBS and RBD in all cases.

Figure 6.23 shows the number of cancelled flight at EWR. RBD cancels more flights in

most of the cases, however, with cancellation model, the CP approach cancels more flights

because it is more profitable to cancel a flight in those cases instead of paying a higher
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Figure 6.22: Passenger delay (EWR)

Figure 6.23: Cancelled flights (EWR)
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Figure 6.24: Seats ontime (EWR)

Figure 6.25: Passengers ontime (EWR)

price.
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Figure 6.26: Revenue generated by Weight-Based Landing Fee vs. Congestion Price
(EWR)

Figures 6.24 and 6.25 show seats ontime and passengers ontime for EWR. The behavior

is similar to the aggregate level; RBD performing better than CP and RBS approach.

However, as reported, the number of flights cancelled by RBD is also higher and PAX

throughput lower, implying that using RBD approach few people were provided services

while a larger percent of people were stranded or delayed.

Figure 6.26 shows the revenue generated by the congestion price versus the revenue

generated by the current weight based landing fee. At EWR, similar to BOS during the lower

capacity levels (i.e., Marginal Low and IFR levels), the revenue generated by the congestion

pricing approach will be much higher than the current revenue generated.3 However, in the

case of the cancellation model, the differences in revenue is lower than in other restrictive

cases. Similar to BOS, EWR will not provide a revenue neutral scenario to apply congestion

prices if IFR conditions occur much of the time. but compared to BOS, at EWR adding

3Further analysis on average revenue per day is provided in Appendix E.
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Figure 6.27: Final profit (LGA)

two more hours at the end of the day has a larger effect in reducing the congestion prices.

6.2.3 LaGuardia Airport (LGA)

Figures 6.27 through 6.34 show the statistics for flights arriving at LGA.

Figure 6.27 shows the total profit at LGA. At the IFR capacity level (L), the CP

approach performs worst. This is due to many profitable flights competing for the resources,

hence larger congestion prices and lower profits. Allowing the flights to be delayed longer

than 3 hours (i.e., for 5 hours) slightly increases the profit. The cancellation model, however,

generates better profit by cancelling more flights and reducing the competition.

Figure 6.28 shows the flight throughput at LGA. Flight throughput is 100% except for

the cancellation model case. RBD cancels flights in the restrictive cases since there are

short-haul flights that it keeps cascading until they cancel due to the deadline. The two

hour extension at the end of the day has no effect in any of these approaches indicating that

most of the congestion is reduced before midnight and therefore, none of the extra resources
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Figure 6.28: Flight throughput (LGA)

are used. This also indicates that there is sufficient capacity at the airport to handle these

flights, however, the timing of flights results in poor performance.

Figure 6.29 shows passenger throughput for flights arriving at LGA. This is similar to

flight throughput; passenger throughput is 100% except in the cancellation cost model case,

where it is cheaper to cancel a flight rather than flying it.

Figure 6.30 reports the flight delay at LGA. The CP approach reports the least flight

delays, almost a 50% better performance than either of the other two approaches.

Figure 6.31 shows the passenger delay at LGA. Again, this is similar to flight delay;

the CP approach allocates resources such that both flight delays and passenger delays are

reduced. RBS performs worst with respect to passenger delay, indicating that the current

allocation scheme is worst for passengers (among the currently studied approaches).

Figure 6.32 shows the cancelled flights at LGA. The CP approach cancels flights only in

the cancellation model to avoid larger congestion prices. RBD cancelled flights when short

haul flights ran out of their limits to be further delayed.
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Figure 6.29: Passenger throughput(LGA)

Figure 6.30: Flight delay (LGA)
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Figure 6.31: Passenger delay (LGA)

Figure 6.32: Cancelled flights (LGA)
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Figure 6.33: Seats ontime (LGA)

Figure 6.34: Passengers ontime (LGA)
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Figure 6.35: Revenue generated by Weight-Based Landing Fee vs. Congestion Price (LGA)

Figures 6.33 and 6.34 show seats and passengers ontime respectively at LGA. This

is one of the airports where the CP performs better than RBD. RBS remains the worst

performer. The better performance of the congestion pricing approach indicates that, given

sufficient resources to accommodate all flights, the CP approach will also maximize ontime

performance ratings.

Figure 6.35 shows the revenue generated by the congestion pricing approach versus

the revenue generated by the current weight-based landing fee. In the case of LGA, the

congestion reported was lower as all the flights were able to get runway access, therefore, for

the days under study, the revenue generated by congestion prices is negligible compared to

the revenue generated by the current weight-based landing fee.4 A point to note is that at

LGA, the charges are $6 per 1000 lbs. making it one of the expensive airports with respect

to landing fees. Using the cancellation cost model reduces the number of flights, hence,

lowering the total profit of the airlines with a congestion pricing approach.

4Further analysis on average revenue per day is provided in Appendix E.
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Figure 6.36: Final profit (PHL)

6.2.4 Philadelphia International Airport (PHL)

Figures 6.36 through 6.43 show the statistics for flights arriving at PHL. Figure 6.36 shows

the profit at PHL. Except at the optimal capacity level (H), higher congestion prices have

reduced overall profitability relative to RBS and RBD at PHL. Using the cancellation model

increases the profitability by cancelling the least profitable flights. Allowing extra resources

at the end of the day adds more to the profit than allowing flights to delay for longer

duration (i.e., for 5 hours).

Figure 6.37 shows the flight throughput statistic at PHL. Except for the cancellation

model cases, the CP approach is better than RBD and better or similar to RBS in perfor-

mance.

Figure 6.38 shows the passenger throughput for flights arriving at PHL. Similar to flight

delay statistics, the CP approach performs better than or similar to other approaches except

in the cancellation model cases.

Figure 6.39 reports flight delays at PHL. With the exception of optimal capacity (H)
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Figure 6.37: Flight throughput (PHL)

Figure 6.38: Passenger throughput (PHL)
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Figure 6.39: Flight delay (PHL)

scenarios and cancellation model scenarios, the CP performs worse than RBD. RBS also

has poor performance with respect to flight delays.

Figure 6.40 shows passenger delay at PHL. The CP approach has better performance

than both RBS and RBD, except for the cancellation model cases. RBS has passenger

delays that are almost twice as large as either RBD or CP.

Figure 6.41 shows cancellations at PHL. RBD has a larger number of cancelled flights.

The CP approach cancels most of its flights in the cancellation model scenario indicating

that for these flights, it was cheaper to cancel rather than pay higher congestion prices.

Figures 6.42 and 6.43 show the ontime statistics for both seats and passengers at PHL.

Similar to the aggregate level, RBD has better performance than other two approaches.

Figure 6.44 shows the revenue generated by the congestion price versus the revenue

generated by the current weight based landing fee. Similar to BOS and EWR, at PHL,

the revenue generated by congestion prices is higher than the revenue generated by weight
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Figure 6.40: Passenger delay (PHL)

Figure 6.41: Cancelled flights (PHL)
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Figure 6.42: Seats ontime (PHL)

Figure 6.43: Passenger ontime (PHL)
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Figure 6.44: Revenue generated by Weight-Based Landing Fee vs. Congestion Price (PHL)

based fees during a congested day.5 In fact, PHL has the lowest rate per 1000 lbs. for the

fee, i.e. $1.63. Even at the Marginal capacity level (M), the revenue generated is 4-5 times

higher. Adding two extra hours at the end of the day decreases the revenue but allowing

flights to delay longer has no effect. The use of the cancellation model seems to effect the

revenue by cancelling more flights.

6.2.5 SanFrancisco International Airport (SFO)

Figures 6.45 through 6.52 show the statistics for SFO airport.

Figure 6.45 shows the profit at SFO airport. Except for the IFR (L) capacity level, CP

outperforms the RBS and RBD approaches. No change is noticed by adding extra resources

at the end of the day. The cancellation model case generates slightly higher profit.

Figure 6.46 shows the flight throughput at SFO. Except for the cancellation model case,

flight throughput was 100%, indicating lower congestion at this airport.

5Further analysis on average revenue per day is provided in Appendix E.
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Figure 6.45: Final profit (SFO)

Figure 6.46: Flight throughput (SFO)
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Figure 6.47: Passenger throughput (SFO)

Figure 6.47 shows passenger throughput at SFO. Similar to flight throughput, all the

passengers reached their destination in all cases except in the cancellation model case, where

the CP approach cancelled fewer flights.

Figure 6.48 shows the flight delays at SFO. The CP has performed well in all the cases,

and the only factor that has a small effect on the flight delay statistics is the capacity level.

Figure 6.49 show the passenger delays. In IFR capacity level (L), CP approach reduces

passenger delay by 50% relative to RBD and by 25% relative to RBS.

Figure 6.50 shows the cancelled flights at SFO airport. The CP approach cancelled a

total of 10 flights for all scenarios which use the cancellation model, while none of the other

two approaches cancelled any flights. Figures 6.51 and 6.52 show the ontime statistics of

both seats and passengers at SFO. Similar to LGA, CP performs better when there are

sufficient resources to allocate to all flights.

Figure 6.53 shows the revenue generated by the congestion price versus the revenue
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Figure 6.48: Flight delay (SFO)

Figure 6.49: Passenger delay (SFO)
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Figure 6.50: Cancelled flights (SFO)

generated by the current weight based landing fee at SFO. Again, similar to LGA, the

revenue generated by congestion pricing is negligible compared to revenue by the weight-

based landing fee.6 At SFO, all the flights were able to obtain runway access. At least for

the days and conditions studied at SFO, congestion was minimum, resulting in relatively

low congestion prices.

6Further analysis on average revenue per day is provided in Appendix E.
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Figure 6.51: Seats ontime (SFO)

Figure 6.52: Passengers ontime (SFO)
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Figure 6.53: Revenue generated by Weight-Based Landing Fee vs. Congestion Price (SFO)

6.3 Further Statistics

This section provides further statistics regarding the new congestion pricing approach,

mainly the magnitude of congestion prices for different scenarios. Figure 6.54 shows both

the average as well as the maximum congestion prices for each of the scenarios. Intuitively,

with higher capacity ranges (i.e., optimum [H] and marginal [M]), the congestion prices

on average are relatively low with only few peak congestion periods having relatively high

prices. At Marginal Low (ML) and IFR (L), however, the average congestion prices are

higher than the maximum price in other capacity scenarios. End of day statistics also be-

have intuitively: with more capacity at the end of the day, the flights can obtain a later slot

which results in lower congestion prices. The cancellation policy of a 3 and 5 hour delay

allowance does not seem to have much effect at the prices. However, in the case of the

cancellation cost model, since flights have more chances to obtain a slot, lower congestion

prices are observed.
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Figure 6.54: Average and maximum Congestion Price ($)

Figure 6.55: Histogram for Congestion Prices at IFR capacity level (L)
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Figure 6.56: Average Proportional Equity with respect to airline delays across all scenarios

Figure 6.55 shows the histogram for the congestion prices in all cases with capacity set

to IFR (L) level. Since, most of the higher congestion prices were recorded in this capacity

scenario, it is interesting to see how these prices are distributed. There are total of 138,072

instances (6 runs each with 23,012 flights). Even with the worst capacity levels, 40% of

the flights paid no congestion price, almost 70% of the flights paid less than $1000, and

96% of the flights paid less than $10,000 as a congestion price. This shows that even with

the worst capacity scenarios, the congestion prices are high at very few time periods. Most

of the time the congestion prices are low and would likely be at the aggregate less than

weight-based prices.

Figure 6.56 shows the average airline proportional equity7 across all 24 scenarios for the

CP approach. The ones above the zero are favored by the system while the ones below

zero are penalized more than their fair share. A value of zero indicates perfect equity. It

7Proportional Equity is defined as the airline’s share of delay with respect to its proportion of flights.
Formal definition is provided in the previous chapter.
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Figure 6.57: Average Proportional Equity with respect to aircraft delays across all
scenarios

is observed that with respect to airlines, the congestion pricing approach favors the larger

airlines as compared to regional ones, however, this is due to the fact that mainline carriers

generally have larger fleets with higher load factors resulting in more profitable flights.

SouthWest Airlines is, however, an outlier in this case. But Southwest has a better score

when looking at proportional equity with respect to cancellations. Even though this might

be similar to what happens currently, but when using the new approach, the discriminatory

behavior is due to profitability and an airline’s willingness to pay for the services it requires.

This also explains one of the reasons as to why mainline carriers with subsidiary or regional

carriers prefer their own flights over subsidiary/regional carriers in case of reduced capacity.

Figure 6.57 shows the average aircraft proportional equity across all 24 scenarios for the

CP approach. Zero line indicates perfect equity, positive index indicates favorable by the

system, while negative index indicates the opposite. In this case, the CP approach favors

again larger aircrafts over smaller ones. Out of the eight aircrafts that have been penalized, 3
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of them are under 20 seaters, two of them are 37 and 44 seaters respectively, two of them are

50 seaters and one of them is a 70 seater. This indicates, that the CP approach discriminates

against the smaller aircrafts. This is again intuitive since, in general smaller aircraft mean

a smaller number of passengers, and therefore less revenue. Again this discrimination is due

to profitability of flights.

6.4 Summary

This chapter summarizes all the results and substantiates the theory that congestion pric-

ing can be an efficient way to allocate runway access to competing flights when capacity is

reduced. The chapter starts by showing statistics of the design of experiments aggregated

over all airports and then individually by airport. Further statistics provide insight regard-

ing the magnitude of congestion prices at different capacity levels and their frequency. At

the end, some basic statistics for equity, namely proportional equity among airlines as well

as among aircrafts, are discussed. Some of the conclusions derived from the comparative

analysis are:

• Adding the variation to add two hours worth of capacity at the end of day had effected

total profit at airports with lesser number of slots than flights (i.e., BOS, EWR and

PHL). At EWR these effects were large since there were many scheduled arrivals at

the end of the day which were able to get a runway access.

• Adding two hours of delay before cancelling a flight showed the incremental effect on

the total profit at LGA and PHL, implying that at these airports there were larger

numbers of flights that were still profitable after 3 hours of delay.

• For the days under study, both LGA and SFO, had sufficient capacity to allocate to all

flights for all the days, however, with different approaches allocation schemes changed

and the performance metrics show that difference: mainly, that the congestion price

approach works better in terms of all passenger statistics at these airports. It prior-

itizes itself in order of increasing throughput, reducing delays and finally improving
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ontime statistics.

• In scenarios where airlines are allowed to cancel a flight by paying a cancellation cost,

more flights are cancelled. This suggests that at times, cancelling a flight is more

profitable for airlines than to operate it and by doing so, an airline can recover the

total profit lost by delay costs of not only the cancelled flight but other flights that

are affected.

• At optimal capacity level (H), the congestion pricing approach performed similar to

alternative approaches in terms of total profit, flight and passenger throughput. It

performed better than these approaches in terms of both flight and passenger delays,

as well as seats ontime and passenger ontime statistics. However, when the capacity

level was very low, losses in profit with respect to the congestion pricing approach

increased due to the additional cost (namely, the congestion price) charged. Thus,

the airlines were required to pay for the congestion created, but more passenger and

flight throughput was achieved with this economic incentive to fly larger and more

profitable flights.

• With respect to the magnitude of congestion prices, even at IFR levels of capacity, 40%

paid no congestion price 70% of the time; airlines paid at most $1000 as a congestion

price while only 7% paid more than $10,000.

• Proportional equity with respect to both airline and aircraft delay indicate that most

of the larger aircrafts of mainline carriers are favored. This is because, in general,

they are more profitable than smaller aircrafts that belong to regional carriers.
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Chapter 7: Conclusions and Future Work

This chapter starts with the summary of results achieved and describes next steps in this

general research area. It also indicates how this work can be extended and applied to other

aspects of the airline allocation problem.

7.1 Conclusions

This research has extended the literature on airport runway capacity allocation problem in

the following ways:

7.1.1 Cost of Delay Model

This research provides a new methodology for calculating the costs of delay for any individ-

ual flight. The model is based on a EuroControl model of delay [Cook et al., 2004], but has

been expanded to now be useful for any aircraft type and also usable when the underlying

components of the EuroControl model (e.g., fuel, crew, maintenance, or other operational

costs) have been changed. The original model did not allow such modifications and could

therefore not be used when an underlying component (such as fuel costs) changed dramat-

ically. A case study is reported that calculates the cost of delay for flights at 12 major U.S.

airports for July 2007. A sensitivity analysis is also performed for this model by varying

fuel and crew costs1 along the baseline historical fuel prices and crew costs of Summer 2007.

Some of the conclusions drawn from the case study and the sensitivity analysis are:

• Airborne delays are expensive as compared to ground delays. Therefore, it is econom-

ical for airlines to prefer ground delays over delays in airborne or taxi segments.

1As these are the major components of the cost of delays compared to maintenance and other miscella-
neous costs.
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• Newer fuel-efficient aircrafts incur significantly less airborne delay costs than their

older counterparts.

• For July 2007, the total delay cost of all the flights, excluding cancelled flights, at 12

major U.S. airports totalled $63.8M.

• The analysis also provides insight into why airlines down-gauge; the newer, smaller

aircraft are more fuel efficient, thereby reducing delay costs significantly for the air-

line. Additionally, higher load factors and increased frequency make down-gauging an

attractive option.

• Fuel costs have the greatest impact on delay costs. An increase in fuel price of about

200% (from $2.042 to $4.50) increases the cost of delay by up to 50% for airborne

delays.

• Fuel burn rates are as important as fuel prices; the same amount of taxi delay in an

efficient aircraft can save delay costs by as much as 10%.

• As fuel costs increase, crew costs become far less important to the overall delay and

flying costs. For ground delays, however, crew costs are a larger component of total

delay costs, and larger aircraft are most impacted since they have larger crews.

The cost of delay analysis thus concludes that, as the economy recovers from the current

recession (starting from 2009), it is expected that the airlines are more likely to increase

frequency rather than up-gauging to larger aircraft. Although this practice might not be

efficient from an airspace-use perspective, it makes good economic sense for an airline.

7.1.2 Congestion Pricing Model (CPM)

This research develops a Congestion Pricing Model or CPM, that takes into account, revenue

and cost for each individual flight for any given time duration and considers all domestic

flights at an airport. It takes into consideration the variable costs of delaying or cancelling

2Average fuel price in Summer 2007.
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a flight as incurred by the airlines, as well as some network effects on the airline’s overall

schedule caused by such delays.

The core of this model is the optimization model that maximizes the total profit of all

the flights for all fifteen-minute periods in a congested period from the time when a GDP

is imposed until the end of the day. Thus, it considers any queues that might result from

the GDP and imposes congestion costs until demand is again in alignment with supply. At

each period, it determines a congestion price such that (based on the relative profit3 of the

flights capable of arriving at the airport in that time period) the number of flights choosing

to pay the congestion price and depart is exactly equal to the arrival capacity available for

that period.

The rest of the flights are delayed and cascaded to subsequent time periods to compete

for the capacity in those time periods. A flight may be cancelled if it satisfies the cancellation

criteria. That is, an airline might choose to cancel a flight if (i) the cancellation cost is less

than any of the congestion fees plus delay costs, or, (ii) if a rule that a flight will not be

delayed more than three or five hours is imposed.

The dual price of the capacity constraint for a specific time period can be used as the

congestion price since this price is the value that one extra unit of capacity at that time

period is worth. In this case, it is the price that the next flight would be willing to pay to

obtain access to the runway. The model has included in the objective function costs incurred

by the airline if the flight is delayed for a period that will force the follow-on flight of that

aircraft to also be delayed. Similarly, to better model an airline’s operational issues, the

model forces flights that were scheduled to overnight at the airport to incur extremely long

delays, but eventually land at that airport. Thus, the model assumes that a major priority

of the airline is to have its next-day schedule begin without a need for the repositioning

of aircraft. The model can be refined further if other rules are discovered that are more

important than profitability to a given airline or flight.

When a Ground Delay Program (GDP) is announced and congestion pricing is imposed,

3The assumption is that airlines value their flights based on profitability.
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Air Traffic Management may find that the airlines have responded in a manner inconsistent

with the profit-maximizing assumptions. In this case, or when weather conditions change,

the future prices must be adjusted to reflect the imbalance between supply and demand.

At the start of the Ground Delay Program (GDP), the model is run with the announced

capacity. The congestion prices will be announced to the airlines, who will decide whether to

accept the price or delay the flight. In the case where more airlines chose to fly than the con-

gestion pricing model anticipated, the capacity limits for the next time period are reduced to

accommodate the extra flights that will arrive at the airport during that fifteen-minute time

period. The model is again run with these new capacity limits and the congestion prices for

future time periods are reset (probably higher, since the demand is greater). Alternatively,

the airlines might react to very high congestion prices by choosing to delay flights rather

than accept this congestion price even though it would be profitable to fly them on time.

In this case, fewer flights will accept the congestion price than anticipated. The users of

the model can choose to either reduce the congestion price in the next period and observe

the demand at this price. Thus, over time the users of the system can learn how to adjust

the prices. An alternative, is to have the model re-adjust the prices by rerunning the model

with a slight increase in capacity limits. Either method will allow a dynamic resetting of

the prices.

Similarly when weather conditions change, the model can be re-run with the new ca-

pacity limits and depending on the increase or decrease of capacity, the model will adjust

both the schedule and the prices accordingly.

The proposed system is unique with respect to other approaches in several respects,

namely:

• It uses more realistic data for flight costs and revenues. In previous models, authors

assumed average ticket prices and cost factors and did not consider the differences

among airlines or aircraft sizes.

• This model considers all possible alternative decisions that can be made for a given

flight: paying the congestion cost immediately, choosing to delay the flight one or
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more 15-minute periods in order reduce its overall delay and congestion pricing costs,

or to cancel the flight. The model reflects the fact that when a flight is cancelled the

airline keeps the revenue, but incurs the additional costs of re-ticketing passenger as

well as any passenger hotel and food costs. Only [Betancor et al., 2003] considered

allowing flights to spill over to future periods but they allowed spill-over only to one

additional time period.

• Rather than considering the queueing effect of capacity imbalances, this model ex-

plicitly inputs the capacity as it is known at the time. Whenever new information is

provided, the model can be re-run and corrections made to reflect the dynamic nature

of ground delays.

7.1.3 Comparative Analysis of CPM

A comparative analysis of this new methodology is performed with other known and im-

plemented approaches that are used to provide congestion management solutions and it is

shown that the system based on congestion pricing methodology has advantages over these

other approaches. Looking at the results of experiments, the following observations were

made:

• With respect to the cost to airlines, congestion prices cost more than the current

weight-based landing fee, however, even with the capacity limit set to IFR levels, with

respect to the sampling data, 70% of the flights paid at most $1000, only 7% paid more

than $10,000 and in the worst scenario, with IFR level capacity, 3 hour cancellation

policy and no flights after midnight, the (non-zero) average was $5000. However, these

congestion prices would only be used on days when GDPs were announced. During

the summer of 2007, there were only a few such days. Thus, one can conceivably

reduce weight-based fees such that together with congestion pricing fees, the entire

pricing approach is revenue-neutral. In addition to that, the airlines are likely to save

additional money because they would no longer need to “pad” their schedules in an

attempt to predict delays and still maintain on-time performance.
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• One important observation is that, allowing flights to be delayed longer than 3 hours

(tarmac delay rule) is beneficial for both airlines and passengers since, it increases both

flight and passenger throughput regardless of whether congestion pricing, Ration-by-

Schedule or Ration-by-Distance is used. However, this modeling has not considered

gate capacity issues and, if too many flights are delayed at the gate, there may be

other capacity problems not considered in this research.4

• Revenue generated by the congestion pricing varied with respect to airports. When

there was sufficient capacity at the airport (i.e., even at IFR limits), then the weight-

based landing fee produced more revenue than did congestion pricing. For lower

capacity levels, the congestion pricing method generated more revenue during times

of severe congestion. However, the data sample used showed that out of 31 days at

5 airports ( a total of a possible 155 days a GDP could have been announced) there

were only 31 times when a GDP occurred. Thus, congestion prices would be non-zero

only a fraction of the entire time. This suggests that a revenue-neutral approach to

airport pricing is possible with a relatively low weight-based landing fee coupled with

a congestion pricing scheme whenever GDPs occur.

• With respect to proportional equity in airline delay, regional airlines received a dispro-

portionate amount of the delay. In RBS, this occurs because the major carrier chooses

to fly their larger aircraft to maintain operational efficiency. In the congestion pricing

approach, the same result occurs because larger aircrafts are more profitable. Inter-

estingly, under a congestion pricing scheme, Southwest was found to delay their flights

more than other airlines, but also to cancel them less frequently. Thus, the model

indicates that Southwest could delay a flight for a few time periods and incur less cost

than by either cancelling the flight or by incurring peak period congestion prices.

• Similarly when looking at proportional equity with respect to aircraft delay, flights

assigned smaller aircrafts incurred a larger share of delays.

4See [Wang, 2011] for an analysis on gate delays.
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• Looking from the stakeholder’s perspective:

– For airlines, not surprisingly, the congestion pricing approach added additional

costs to the airlines and their associated profit went down (when only looking at

the congested time periods). However, had the airlines known what the conges-

tion price would be and were willing to pay such a cost, they might have chosen

to remove padding and save operational costs that are included in the model.

More interestingly, when a $100 per passenger cancellation cost is used, the total

costs incurred were actually about the same as incurred by Ration-by-Schedule.

Thus, having long delays but not being allowed to cancel a flight, costs the air-

lines more than simply incurring cancellation costs on some flights. For OnTime

statistics (i.e., Seats OnTime), it is observed that Ration-by-Distance(RBD) per-

forms better in almost all cases. This is true when there is significant congestion

at an airport. However, in less-congested times, congestion pricing performed

better with respect to OnTime statistics.

– From the perspective of Air Traffic Flow Management (ATFM), flight through-

put for the congestion pricing approach was similar to the Ration-by-Schedule

(RBS) approach currently implemented at the airports. However, when capacity

was severely reduced and one used a cost of cancellation as the determination of

whether or not to cancel a flight, the congestion pricing approach cancelled more

than 1000 flights (across all 51 days and 23,012 flights) resulting in total profits

that were close to those of the RBS approach. With respect to flight delays,

the congestion pricing approach performed better than the Ration-by-Schedule

(RBS) approach in each of the scenarios. The Ration-by-Distance (RBD) ap-

proach outperforms all other approaches in terms of total flight delays. A point

worth mentioning is that the total flight delay is constant in the absence of can-

celled flights, and as observed in cases where there are no cancellations (specific
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to a single airport), the congestion pricing approach performs better than Ration-

by-Distance (RBD) approach. This implies that congestion pricing distributes

flight delays evenly, compared to the RBD approach, which favors a smaller set

of flights and severely penalizes others.

– From the perspective of passengers, with respect to PAX throughput, the conges-

tion pricing approach performs better in all scenarios except when cancellation

costs are part of the decision process and there is severe capacity limitations. In

this case, cancelling a flight is better for the airlines than delaying some flights

and such cancellations may not be best for the passengers impacted. With re-

spect to total and average PAX delay, the congestion pricing approach performs

better than either alternative approach in all scenarios. Average PAX delay per

passenger is also lowest with the congestion pricing approach as compared to

other approaches. Finally with respect to PAX OnTime, similar to “Seats On-

Time,” the Ration-by-Distance (RBD)approach performs better in all cases, ex-

cept when looking at the airport level; the congestion pricing approach performs

better when there is sufficient capacity with respect to all competing flights.

7.2 Future Work

Following are the directions for future research:

• Network Effects: In order to more closely simulate the behavior of the airlines and

how congestion prices will effect the overall network of airlines, it would be beneficial

to have more information about how a given flight’s delay will propagate through-

out the network of a given airline. With such information, additional costs can be

included that better reflect network effects. Currently, the model prioritizes flights

based on their profitability and only considers the follow-on flight. However, additional

parameters and costs could be added that would change priority where appropriate

by including the costs that may be incurred by an airline due to the disruption in
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their schedule. One may also include other priorities of the airline, where appropriate

(e.g., international flights must depart within a certain time frame based on treaty

agreements and may be given priority over more profitable flights.)

• Cancellation Model: Another step is to derive better cancellation models since cancel-

lation costs have different characteristics than flight delays. Certain flights may incur

significantly different per passenger cancellation costs because of the type of flight

(e.g., high-valued customers, few alternative connections, etc). There are currently

no models that take into account the various considerations made by airlines when

making cancellation decisions. The only references found assign either a per flight

cost (e.g., half the revenue of the flight, or a flat cost per flight) or, alternatively a

per-passenger cost(e.g., $100 per passenger) as shown in this research This extension

will require discussions with airline dispatching and operations personnel to determine

the characteristics inherent in cancellation decisions.

• Airspace Congestion Pricing: An obvious extension is to use the congestion pricing

model to allocate congested airspace. Portions of the airspace can be divided into

segments and each such segment would have a capacity and thereby a specific number

of slots associated with that segment at a given time period. The congestion price

model can then be used to assign these slots among competing flights.

• Combinatorial Slots: Instead of treating each congested airspace and airport slots

separately, the entire route can be combined into a single resource and assigned to

flights using the model.

• Airline Decision Making Policy: Different airlines may have different policies regard-

ing the value of delays and cancellations. Airlines may consider (i) throughput, (ii)

average ontime performance, (iii) connectivity of flight to the overall network, and (iv)

profitability. If it is determined that airlines have different policies, then the mecha-

nism can incorporate such policies into the algorithm, thereby revising the prices to

assure that demand and supply are in equilibrium.
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• Agent Based Simulation: Another direction for extension is to study the overall effect

on the National Airspace System (NAS) when all the airlines follow the congestion

pricing methodology using an agent-based simulation environment. Such modeling

can include a study of what happens when airlines choose alternative strategies for

accepting announced prices.

• Airline Substitution Model: A slightly modified derivative of this model can be used to

optimize the current airline schedule in case of capacity reductions. Thus, instead of

considering the entire collection of flights that are scheduled to arrive at that airport

at a given period of time, the model could be used to determine how to allocate the

slots provided to the airline in a Ration-by-Schedule approach. Thus, the airline is

given a specific number of slots in each time period by Air Traffic Flow Management

(ATFM) and it uses a model very similar to the congestion pricing model to allocate

the slots to given flights based on the profitability of such flights. Additional airline-

specific rules regarding individual flights can also be added into the model to prioritize

specific kind of flights.

177



Appendix A: List of Airlines

AIRLINE NAME FAACARRIER IATACODE
Alaska Airlines, Inc. ASH AS
Air Wisconsin AWI ZW
AirTran Airways TRS FL
American Airlines AAL AA
American Eagle Airlines EGF MQ
America West Airlines AWE HP
ATA Airlines AMT TZ
Atlantic Southeast Airlines ASQ EV
Big Sky Airlines BSY GQ
Cape Air KAP 9K
Chautauqua Airlines CHQ RP
Colgan Air CJC 9L
Comair COM OH
CommutAir UCA C5
Continental Airlines COA CO
Delta Air Lines DAL DL
ExpressJet BTA XE
Freedom Airlines FRL F8
Frontier Airlines FFT F9
Hawaiian Airlines HAL HA
Horizon Air QXE QX
JetBlue Airways JBU B6
Midwest Airlines MEP YX
Mesa Airlines ASH YV
Northwest Airlines NWA NW
Pinnacle Airlines FLG 9E
Piedmont Airlines PDT US
PSA Airlines JIA US
Republic Airlines RPA RW
Shuttle America TCF S5
SkyWest Airlines SKW OO
Southwest Airlines SWA WN
Spirit Airlines NKS NK
Sun Country Airlines SCX SY
Trans States Airlines LOF AX
United Airlines UAL UA
USA3000 Airlines GWY U5
USAir USA US
Virgin America VRD VX
Western CXP XP
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Appendix B: List of Aircraft

DESCRIPTION AIRCRAFT NAME ETMS CODE SEATS
Airbus Industries A318 A318 A318 107
Airbus Industries A319 A319 A319 124
Airbus Industries A320 A320 A320 164
Airbus Industries A320 A320-200 A32023 150
Airbus Industries A321 A321 A321 199
Airbus Industries A330-300 A330-300 A333 295
Beech Aircraft Beech 1900/C-12J BH-1900 B190 19
Boeing Company B757/JT10D B757-200 B757 208
Boeing Company Model 717-200 B717-200 B712-B717 106
Boeing Company Model 737-300 B737-300 B733 128
Boeing Company Model 737-400 B737-400 B734 146
Boeing Company Model 737-500 B737-500 B735 108
Boeing Company Model 737-700 B737-700 B737 126
Boeing Company Model 737-800 B737-800 B738 162
Boeing Company Model 737-900 B737-900 B739 177
Boeing Company Model 747-200 B747-200 B742 452
Boeing Company Model 747-400 B747-400 B744 416
Boeing Company Model 757-200 B757-200 B752 208
Boeing Company Model 757-300 B757-300 B753 240
Boeing Company Model 767-200 B767-200 B762 216
Boeing Company Model 767-300 B767-300 B763 210
Boeing Company Model 767-400 B767-400ER B764 245
Boeing Company Model 777-200 B777-200 B772 305
Canadair Bombardier CL600/610 CL600 CL600 18
Canadair Bombardier RJ-100 Regional Canadair Reg-100 CRJ1-CRJ2 50
Canadair Bombardier RJ-700 Regional Canadair Reg-700 CRJ7-CRJ9 50
Cessna Aircraft Cessna 401/402 Aztec C402 8
DeHavilland DASH 8/DHC8-100 DHC-8-100 DH8A 37
DeHavilland DASH 8/DHC8-300 DHC-8-300 DH8C 50
Embraer Brasilia EMB120 EMB120 E120 30
Embraer EMB145/EP/EU/LU Embraer ERJ 145 E145-E45X 50
Embraer EMB170 Embraer ERJ 170 E170 70
Embraer ERJ-135 Embraer ERJ 135/140 E135 44
Embraer ERJ-190 Embraer ERJ 190 E190 98
McDonnell-Douglas DC-9-30 DC9-30 DC93 105
McDonnell-Douglas DC-9-40 DC9-40 DC94 125
McDonnell-Douglas DC-9-50 DC9-50 DC95 139
McDonnell-Douglas MD-81 MD-80-81 MD81 142
McDonnell-Douglas MD-82 MD-80-82 MD82 142
McDonnell-Douglas MD-83 MD-80-83 MD83 142
McDonnell-Douglas MD-88 MD-80-88 MD88 142
McDonnell-Douglas MD-90 MD-90-30 MD90 162
SAAB/Fairchild SF 340 SF-340-B PLUS SF34 35
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Appendix C: Problem Formulation for a Single Day XX in

MPL

TITLE

congestion_price_model_w_overnight_w_cancel

OPTIONS

DatabaseType=Access;

DatabaseAccess="input_data.mdb";

INDEX

node := 1..96;

ind:= DATABASE("all_flights","ID");

i := node;

j := node;

m := node;

k:=ind;

!pick all scheduled flights

flight_arc[k,i] := DATABASE("all_flights",k="ID",i="TimeWindow"

where DayIndex =XX);

flight_copy_arc[k,i,j]:=DATABASE("y_values",k="ID",i="TimeWindow",

j="alt_TimeWindow" where DayIndex =XX);

overnight_flights[i,k]:=DATABASE("overnight_flights",k="ID",i="TimeWindow"

where DayIndex=XX); !new index for overnight_flights if they use sink

DATA

!pick caps

cap[m]:=DATABASE("final_caps","Rem_Cap",m="TimeWindow" where Day_Index =XX);

R[i,k] := DATABASE("all_flights","Revenue",k="ID",i="TimeWindow" where

DayIndex =XX);

C[i,k] := DATABASE("all_flights","FlightCost",k="ID",i="TimeWindow" where

DayIndex =XX);

W[i,k] := DATABASE("all_flights","Landing_Fee",k="ID",i="TimeWindow" where
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DayIndex =XX);

FuelCost[i,k]:=DATABASE("all_flights","FuelCost",k="ID",i="TimeWindow" where

DayIndex =XX);

PAXCost[i,k]:=DATABASE("all_flights","PAX_Cost",k="ID",i="TimeWindow" where

DayIndex =XX);

DelayCost[i,k,j] := DATABASE("delaycost_copy","cost",k="ID",i="TimeWindow",

j="alt_TimeWindow" where DayIndex =XX);

DelayMin[i,j]:= DATABASE("delaycost_mins","DelayMinutes",i="TimeWindow",

j="alt_TimeWindow");

CongCost[m]:=DATABASE("CongestionCost","CongestionPrice",m="TimeWindow"

where Day_Index =XX);

DepDelayCost_Tot[i,k,j] :=DATABASE("delaycost_copy","dep_delay",k="ID",

i="TimeWindow",j="alt_TimeWindow" where DayIndex =XX);

! DepFlight is zero for overnight_flights

DepFlight[i,k]:=DATABASE("all_flights","NEXTTW",k="ID",i="TimeWindow" where

DayIndex =XX);

! Congestion Cost for overnight flights (if they use the sink)

CongCost_over[k,i]:=DATABASE("overnight_flights","CongestionCost",k = "ID",

i="TimeWindow" where DayIndex =XX);

! Delay Cost for overnight flights (if they use the sink)

DelayCost_over[k,i]:=DATABASE("overnight_flights","DelayCost",k = "ID",

i="TimeWindow" where DayIndex =XX);

VARIABLES

x[i,k in flight_arc];! WHERE cap[i]< scheduled_ops[i,d];

y[i,k,j in flight_copy_arc];

o[i,k in overnight_flights];

VARIABLES
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CongestionCost;

DelCost;

MACRO

CANCEL = sum(i,k in flight_arc: (PAXCost - FuelCost-W) - x(PAXCost-FuelCost-W));

SINKCOST = sum(i,k in overnight_flights: (CongCost_over* o + DelayCost_over*o));

TOTAL_PROFIT = sum(i,k in flight_arc: (R*x-C*x-W*x)) - DelCost -CongestionCost

-SINKCOST -CANCEL;

TOTAL_PROFIT_CANCEL = sum(i,k in flight_arc: (R-C-W)) - DelCost -CongestionCost

-SINKCOST -CANCEL;

MODEL

MAX TOTAL_PROFIT_CANCEL;

SUBJECT TO

CongestionCost = Sum (j: CongCost[m=j]*Sum(i,k: y[i,k,j]));

!Cost of Delay at Gate for Delayed Flights l>0 , at l=0, cost = 0 and

!departure leg delay

DelCost = sum(k,i,j in flight_copy_arc: y*DelayCost[i,j,k]*DelayMin[i,j])

+ sum(k,i,j in flight_copy_arc: y*DepDelayCost_Tot[i,j,k]);

!each_flight is flown once, either at its original time l=0 or later times l>0

single_flight[i,k in flight_arc] ->sing: x[i,k] = sum(j: y[k,i,j])+ o[k,i];

!Lower bound on x variable (whether the flight has overnightstay or not)

var_x[i,k in flight_arc] when DepFlight[i,k]<=0: x[i,k]=1;

!Limited flight per arrival per time window per day,

!either flight of this timewindow l=0 or flights from previous windows

in_flight[j] -> infl when cap[m=j]>=0 : Sum(i,k: y[i,k,j])<=cap[m=j];
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in_flight[j] -> infl when cap[m=j]<0 : Sum(i,k: y[i,k,j])<=0;

BOUNDS

x[i,k in flight_arc]<=1;

y[i,k,j]<=1;

END

183



Appendix D: Sensitivity Analysis of Cost of Delay Model

Fuel Price

Manufacturer Aircraft type $1.50 $3.00 $4.00 $4.50

Airbus

A318 $21.47 $41.35 $54.61 $61.24
A319 $21.75 $41.89 $55.32 $62.04
A320 $23.24 $44.92 $59.37 $66.59

A321-322 $25.68 $50.17 $66.49 $74.65
A310 $50.95 $95.39 $125.02 $139.83

A300-306 $52.19 $99.42 $130.91 $146.66
A340-342-343-345-346 $52.23 $101.63 $134.57 $151.04

A330-332-333 $52.23 $101.63 $134.57 $151.04

ATR’s AT43-AT72 $7.93 $14.49 $18.86 $21.04

Boeing

B737 $22.3 $42.51 $55.98 $62.71
B712-717 $22.38 $43.05 $56.83 $63.72
B735-736 $23.15 $44.42 $58.59 $65.68
B733 $23.36 $44.74 $59 $66.12
B734 $23.52 $45.29 $59.8 $67.05
B738 $25.09 $47.98 $63.24 $70.87
B739 $26.26 $50.32 $66.36 $74.38
B732 $26.75 $50.47 $66.28 $74.19

B73C-73Q $27.28 $52.47 $69.27 $77.66
B752-757 $31.56 $60.98 $80.6 $90.41
B753 $36.56 $71.13 $94.18 $105.71
B762 $41.3 $79.74 $105.37 $118.19
B722 $43.7 $81.02 $105.89 $118.33

B763-767 $44.59 $86.33 $114.15 $128.07
B721-727 $44.59 $78.67 $101.39 $112.75
B764 $48.54 $94.25 $124.72 $139.95

B772-773-777-77L-77W $59.64 $116.17 $153.86 $172.7
B744-747 $88.58 $173.83 $230.67 $259.09
B742-743 $98.26 $192.67 $255.61 $287.07
B741 $102.28 $200.56 $266.08 $298.84

Table D.1: Cost of delay per minute for 30 minutes delay at airborne (by aircrafts)

184



Fuel Price

Manufacturer Aircraft type $1.50 $3.00 $4.00 $4.50

Dash’s

DH8A $6.49 $12.01 $15.69 $17.53
DHC8 $6.49 $12.01 $15.69 $17.53
DH8B $6.84 $12.65 $16.52 $18.45
DH8C $6.84 $12.65 $16.52 $18.45
DH8D $11.13 $20.83 $27.3 $30.54

Embraer

E120 $5.04 $9.15 $11.89 $13.26
E110 $12.19 $23.39 $30.86 $34.59

E45X-145 $12.19 $23.39 $30.86 $34.59
E140 $13.1 $25.08 $33.07 $37.06

E170-175 $13.1 $25.08 $33.07 $37.06
E135 $13.77 $26.44 $34.88 $39.1
E190 $19.64 $37.85 $49.98 $56.05

Lockheed L101 $76.94 $148.49 $196.2 $220.05

DC’s

DC8 $6.49 $12.01 $15.69 $17.53
DC91 $21.65 $40.89 $53.72 $60.13
DC93 $28.68 $54.8 $72.21 $80.92
DC9 $30.22 $58.39 $77.17 $86.57
DC94 $31.84 $59.87 $78.56 $87.91
DC95 $32.66 $63.27 $83.67 $93.87
DC87 $40.83 $79.02 $104.48 $117.21
DC86 $50.82 $99.1 $131.28 $147.37
DC10 $64.19 $125.95 $167.12 $187.7
DC8Q $65.07 $122.95 $161.54 $180.83

MD’s

MD90 $26.23 $50.45 $66.6 $74.67
MD80-81-82-83-87 $30.22 $58.39 $77.17 $86.57

MD88 $30.22 $58.39 $77.17 $86.57
MD11 $71.23 $135.91 $179.03 $200.59
MD10 $71.23 $135.91 $179.03 $200.59

RJ’s

CL60 $11.67 $22.33 $29.43 $32.98
CRJ2 $11.67 $22.33 $29.43 $32.98
CRJ1 $12.53 $23.98 $31.62 $35.44
CL30 $12.9 $24.65 $32.48 $36.39
CRJ7 $12.9 $24.65 $32.48 $36.39
CRJ9 $15.41 $29.82 $39.43 $44.23

Table D.2: Cost of delay per minute for 30 minutes delay at airborne (by aircrafts)-cont’d.
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Fuel Price

Manufacturer Aircraft type $1.50 $3.00 $4.00 $4.50

Airbus

A318 $2.76 $4.02 $4.86 $5.28
A319 $2.78 $4.04 $4.88 $5.3
A320 $3.15 $4.81 $5.92 $6.47
A30B $4.15 $6.81 $8.59 $9.47

A321-322 $2.64 $4.13 $5.13 $5.63
A310 $7.95 $9.9 $11.2 $11.84
A306 $7.25 $9.91 $11.69 $12.57
A300 $7.44 $10.3 $12.2 $13.16

A340-342-343-345 $5.75 $8.87 $10.94 $11.98
A330-332-333 $5.88 $9.13 $11.29 $12.37

A346 $8.61 $14.58 $18.56 $20.56

ATR’s
AT43 $1.87 $2.42 $2.78 $2.97
AT72 $1.97 $2.63 $3.06 $3.28

Boeing

B737 $3.33 $4.7 $5.6 $6.06
B712-717 $2.93 $4.24 $5.11 $5.55
B735-736 $3.39 $5 $6.07 $6.61
B733 $3.34 $4.82 $5.81 $6.3
B73S $3.47 $5.08 $6.15 $6.69
B734 $3.2 $4.75 $5.78 $6.29
B738 $3.53 $4.99 $5.97 $6.46
B739 $3.53 $4.99 $5.97 $6.46
B732 $4.61 $6.39 $7.58 $8.17
B73C $3.43 $4.89 $5.87 $6.36
B73Q $3.74 $5.52 $6.71 $7.3

B752-757 $3.99 $5.96 $7.28 $7.94
B753 $3.93 $6 $7.37 $8.06
B762 $4.61 $6.56 $7.86 $8.51
B722 $8.77 $11.65 $13.57 $14.53

B763-767 $4.61 $6.56 $7.86 $8.51
B721 $12.25 $14.83 $16.55 $17.41
B727 $12.55 $15.43 $17.35 $18.31
B764 $5.31 $7.97 $9.75 $10.63

B772-777-77L $5.9 $8.92 $10.93 $11.93
B773-77W $7.7 $12.5 $15.7 $17.31
B744-747 $8.5 $13.9 $17.5 $19.3
B743 $7.81 $12.04 $14.86 $16.28
B742 $9.73 $15.89 $19.99 $22.04
B741 $9.19 $14.67 $18.33 $20.15
B74S $8.95 $14.43 $18.09 $19.91

Table D.3: Cost of delay per minute for 30 minutes delay at taxi (by aircrafts)
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Fuel Price

Manufacturer Aircraft type $1.50 $3.00 $4.00 $4.50

Dash’s

DH8A $1.49 $2.04 $2.4 $2.59
DHC8 $1.6 $2.26 $2.7 $2.92
DH8B $1.65 $2.3 $2.73 $2.94
DH8C $1.65 $2.3 $2.73 $2.94
DH8D $2.02 $2.68 $3.12 $3.34

Embraer

E120 $1.45 $2 $2.36 $2.55
E110 $1.15 $1.34 $1.47 $1.53

E45X-145 $1.57 $2.18 $2.59 $2.79
E140 $1.69 $2.3 $2.71 $2.91

E170-175 $1.89 $2.69 $3.23 $3.5
E135 $1.67 $2.28 $2.69 $2.89
E190 $2.18 $2.98 $3.52 $3.79

Lockheed L101 $9.36 $13.74 $16.66 $18.12

DC’s

DC8 $4.31 $7.69 $9.94 $11.07
DC91 $3.94 $5.61 $6.73 $7.29
DC93 $4.06 $5.74 $6.86 $7.42
DC9 $3.6 $5.28 $6.39 $6.95
DC94 $5.42 $7.31 $8.57 $9.2
DC95 $3.85 $5.77 $7.04 $7.68
DC87 $5.78 $9.11 $11.33 $12.43
DC86 $5.71 $9.03 $11.25 $12.36
DC10 $5.45 $8.63 $10.75 $11.8
DC8Q $9.96 $13.28 $15.5 $16.6

MD’s

MD90 $3.55 $5.21 $6.32 $6.88
MD80-81-82-83-87 $3.61 $5.31 $6.43 $7

MD88 $3.67 $5.41 $6.58 $7.16
MD11 $10.04 $14.03 $16.7 $18.03
MD10 $10.2 $14.35 $17.11 $18.49

RJ’s

CL60 $1.62 $2.25 $2.68 $2.89
CRJ2 $1.62 $2.25 $2.68 $2.89
CRJ1 $1.67 $2.3 $2.73 $2.94
CL30 $1.74 $2.38 $2.8 $3.01
CRJ7 $2 $2.9 $3.5 $3.79
CRJ9 $1.87 $2.76 $3.36 $3.66

Table D.4: Cost of delay per minute for 30 minutes delay at taxi (by aircrafts) cont’d.
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Appendix E: Revenue generated per day at understudy

airports- Weight based fee vs. congestion pricing revenue

Following charts show the average revenue generated by flights paying weight-based land-

ing fee at these airports as well as the revenue generated by congestion pricing approach

presented in this research. Table E.1 shows the weight-based landing fee at studied airports

for July 2007 as announced by the corresponding airport authorities.

Table E.1: Weight based landing fee per 1000 lbs, Summer 2007

Airport BOS EWR LGA PHL SFO

$ per 1000lbs. $3.77 $5.83 $6 $1.63 $3

The research only looks at the GDP days that occurred in the month of July 2007 at

these airports and assumes that, since there was no GDP implemented on the rest of the

days, there was no congestion and therefore no pricing mechanism would be implemented.

However, weight-based landing fee would be collected based on each flight’s landing and is

independent of whether it is a GDP or a non-GDP day. Keeping this in mind, for these

charts, the congestion pricing for all time periods on non-GDP days is assumed to be zero,

while the weight-based fee is still applied. Hence, there is no revenue generated on a non-

GDP day using the congestion pricing approach and the only revenue collected is from the

GDP days.

These charts indicate that at different airports, revenue generated by congestion pricing

varies to the extent that at some airports, for e.g., LGA and SFO, the revenue generated by

weight-based fee is higher than the revenue generated congestion pricing, however, at other

airports, BOS, EWR and PHL, the revenue generated by congestion prices, specifically at

lower capacity levels, for only GDP days, is higher than the revenue generated by weight-

based landing fees for the whole month of July 2007. At PHL, this is true for all capacity

levels.
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