Bayesian Inference and Decision Theory

Unit 9: Conclusion: Multinomial Distribution and Latent Groups
Learning Objectives for Unit 9

• Find the posterior distribution for the probability vector when observations are randomly sampled from a multinomial distribution and the prior distribution for the probability vector is a Dirichlet distribution.

• Define a latent variable and describe how Bayesians treat latent variables

• Describe the label switching problem in MCMC models with latent variables

• Summarize basic ideas of Bayesian approach to inference and decision-making
Running Example: Inventory Management and Sales Prediction

• We will review many of the fundamental ideas of this course through a simplified inventory management and sales prediction example

• We will apply the methods we learned in this course to a series of increasingly complex decision-making and prediction problems
 • Predict future sales of each product given data on past sales
 • Decide how much of each product to stock to maximize profits
 • Use hierarchical model to predict sales for sub-groups of customers
 • Use hierarchical model to discover clusters of customers with similar buying patterns

• To address this example we will first introduce a new conjugate pair to generalize the binomial / beta conjugate pair to problems with more than two categories
Categorical Data and the Multinomial Distribution

- Categorical data consists of observations falling into one of a finite number m of categories
 - Each patient has one of m diseases
 - Each customer purchase consists of one of m products
 - Each sampled organism belongs to one of m taxa
 - Each sampled word in a document is one of m possible words
- The *multinomial* distribution generalizes the binomial distribution to more than two categories
 - Parameters: probabilities $\Theta_1, \ldots, \Theta_m$, where $\sum_i \Theta_i = 1$
 - Observation: X_1, \ldots, X_m is a vector of counts of cases in each category, where $\sum_i X_i = n$ is the total count
 - Likelihood function $f(x_1, \ldots, x_m | \theta_1, \ldots, \theta_m) = \left(\frac{n!}{x_1! \cdots x_m!} \right) \theta_1^{x_1} \cdots \theta_m^{x_m}$
Dirichlet Distributions: A Conjugate Family to the Multinomial Family of Distributions

\((\Theta_1, \ldots, \Theta_m) \) has a Dirichlet distribution with shape parameters \(\alpha_1, \ldots, \alpha_m \), all \(\alpha_i > 0 \):

- **Sample space**: Real positive numbers that sum to 1
- **pdf**:
 \[
 \frac{\Gamma(\alpha_1 + \cdots + \alpha_m)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_m)} \theta_1^{\alpha_1-1} \cdots \theta_m^{\alpha_m-1}
 \]
- **E**:
 \[
 E[\Theta_i|\alpha_1, \ldots, \alpha_m] = \frac{\alpha_i}{\sum_i \alpha_i}
 \]
- **Var**:
 \[
 \text{Var}[\Theta_i|\alpha_1, \ldots, \alpha_m] = \frac{\hat{\theta}_i(1-\hat{\theta}_i)}{(\sum_i \alpha_i+1)}
 \]
- **Cov**:
 \[
 \text{Cov}[\Theta_i, \Theta_j|\alpha_1, \ldots, \alpha_m] = \frac{-\hat{\theta}_i\hat{\theta}_j}{(\sum_i \alpha_i+1)}
 \]

- **Dirichlet distribution is a multivariate generalization of the Beta distribution**

 - We call \(\alpha_i \) the *virtual count* for category \(i \)
 - Marginal distribution for \(\Theta_i \) is Beta(\(\alpha_i, \sum_{j \neq i} \alpha_j \))
 - Dirichlet distribution with \((\alpha_1, \ldots, \alpha_m) = (1, \ldots, 1) \) is the uniform distribution, putting equal density on all \(\theta_1, \ldots, \theta_m \) with \(\sum_i \theta_i = 1 \)

 - If \(m > 2 \), the uniform distribution on \((\Theta_1, \ldots, \Theta_m) \) is *not* uniform on any \(\Theta_i \)
 - Example: for four categories, if \(\theta_1, \ldots, \theta_4 \) has uniform distribution, then \(\theta_1 \) has Beta(1,3) distribution
Examples of Dirichlet distributions over $\mathbf{p} = (p_1, p_2, p_3)$ which can be plotted in 2D since $p_3 = 1 - p_1 - p_2$:

- Dirichlet$(1,1,1)$
- Dirichlet$(2,2,2)$
- Dirichlet$(10,10,10)$
- Dirichlet$(2,10,2)$
- Dirichlet$(2,2,10)$
- Dirichlet$(0.9,0.9,0.9)$

Figure taken from http://mlg.eng.cam.ac.uk/zoubin/talks/uai05tutorial-b.pdf
The Multinomial / Dirichlet Conjugate Pair

- The multinomial and Dirichlet families of distributions are a conjugate pair:

 IF Observations $X_1, \ldots, X_k = (X_{11}, \ldots, X_{1m}), \ldots, (X_{k1}, \ldots, X_{km})$ are a random sample of counts drawn from a multinomial distribution with probability vector $(\Theta_1, \ldots, \Theta_m)$ and the prior distribution for Θ is Dirichlet$(\alpha_1, \ldots, \alpha_m)$

 THEN Posterior distribution for Θ is Dirichlet$(\alpha_1^* \cdots \alpha_m^*)$, another member of the conjugate family, where $\alpha_j^* = \alpha_j + \sum_{i=1}^k X_{ij}$

- The posterior virtual count for category j is the sum of the prior virtual count α_j and the k observed counts (X_{1j}, \ldots, X_{kj}) for category j
Example: Inventory Management

- A company needs to decide how much of each of four products to stock per time period.
- The company’s data analytics team models sales as follows:
 - The number of customers per time period has a Poisson distribution with rate $\lambda = 1000$ customers per period.
 - Each customer orders one of the four products.
 - Customer orders are modeled as a multinomial distribution with probability $(\Theta_1, \Theta_2, \Theta_3, \Theta_4)$.
 - If the product is in stock, the customer walks away with it; otherwise, a rush order is placed for the item and it is delivered to the customer the next day.
- The company’s utility function is the sum of:
 - Profit of 20 for each sale.
 - Cost of 2 for each item in inventory that is not sold.
 - Cost of 15 for each rush order.
- The company assumes a uniform prior distribution on $(\Theta_1, \Theta_2, \Theta_3, \Theta_4)$.
- Sales data has been collected for a random sample of 180 customers.
- Given this model and the data, what is the optimal inventory for each product?
Inventory Management: Posterior Distribution for Item Choice Probabilities

- Prior distribution for \((\Theta_1, \Theta_2, \Theta_3, \Theta_4)\) is Dirichlet(1,1,1,1)
- Observations \((X_1, X_2, X_3, X_4) = (38, 62, 73, 7)\)
- Posterior distribution for \((\Theta_1, \Theta_2, \Theta_3, \Theta_4)\) is Dirichlet(39, 63, 74, 8)
 - \(\Theta_i\) has a beta distribution with shape parameters \(X_i + 1\) and \(\sum_{j \neq i} X_j + 3\)
 - \(E[(\Theta_1, \Theta_2, \Theta_3, \Theta_4)|(X_1, X_2, X_3, X_4)] = (0.212, 0.342, 0.402, 0.043)\)
 - \(SD[(\Theta_1, \Theta_2, \Theta_3, \Theta_4)|(X_1, X_2, X_3, X_4)] = (0.030, 0.035, 0.036, 0.015)\)
 - 90% credible intervals for proportions:
 - \(\Theta_1: [0.164, 0.263]\)
 - \(\Theta_2: [0.286, 0.401]\)
 - \(\Theta_3: [0.343, 0.462]\)
 - \(\Theta_4: [0.022, 0.071]\)

R code can be found in DirichletExampleOptimizeInventory.R

©Kathryn Blackmond Laskey
Spring 2020
Predictive Distribution for Sales

- Predictive distribution for another sample of 180:
 - Marginal distribution for number of sales in category i is beta-binomial with size 180, probability $\hat{\theta}_i = \frac{\hat{x}_i + 1}{184}$ and overdispersion $\sum_j \alpha_j^* = 184$
 - Joint distribution for all categories is Dirichlet-multinomial marginal likelihood
- To predict sales in each category in next time period
 - Total sales Y have Poisson distribution with mean 1000
 - Given total sales Y, sales X_i in category i are beta-binomial with size Y, probability $\hat{\theta}_i = \frac{\hat{x}_i + 1}{184}$ and overdispersion $\sum_j \alpha_j^* = 184$
 - Marginalize out Y to find predictive distribution for sales in each category
Optimal Inventory

- Step 1: Find predictive distribution of sales for product i:
 - Total sales Y have Poisson distribution with mean 1000
 - Given total sales Y, sales X_i in category i are beta-binomial with size Y, probability $\hat{\theta}_i = \frac{X_i + 1}{184}$ and overdispersion $\sum_j \alpha_j^* = 184$
 - Marginalize out Y to find predictive distribution $f(x) = P(X_i = x)$ for sales of product i

- Step 2: Find expected utility for stocking r_i items in category i:
 - For each value x_i for X_i calculate net gain:
 - Gain of $20x_i$ from profit on sales
 - Loss of $15(x_i - r_i)$ from rush orders if $x_i > r_i$
 - Loss of $2(r_i - x_i)$ from excess inventory if $x_i < r_i$
 - Multiply $(20x_i - 15(x_i - r_i)1[x_i > r_i] - 2(r_i - x_i)1[x_i < r_i])$ times predictive pmf $f(x_i)$ and sum all values

- Step 3: Choose r_i to maximize expected utility
Optimization Results

- Optimal inventory is \((R_1, R_2, R_3, R_4) = (252, 390, 451, 63)\)
- Expected sales are \(E(X_1, X_2, X_3, X_4) = (211.9, 342.4, 402.1, 43.5)\)
 - Stock more items than expected sales to protect against cost of rush orders
 - Using binomial point estimates instead of beta-binomial predictive probabilities yields recommend inventory of \((229, 364, 426, 51)\)
 - Less overstocking
 - Slightly sub-optimal solution
- Expected profit is 19535
 - Expected profit using best solution under binomial predictive distribution is 19422 (this is more than 99% of optimal profit)
 - Binomial model estimates profit at 19789 (about 3% overestimate)
Extension: Hierarchical Multinomial Model

- There may be count data from multiple groups, each with its own sales distribution
 - Multinomial observations with group-dependent probabilities of purchasing different products
- Hierarchical model allows groups to share information
 - Top level is hyperparameter
 \((\alpha_1, \ldots, \alpha_m) \sim g(\alpha)\)
 - Next level is parameters for groups
 \((\theta_{g1}, \ldots, \theta_{gm}) \sim \text{iid Dirichlet}(\alpha_1, \ldots, \alpha_m)\)
 - Bottom level are observations of sales to customers
 \((X_{g1i}, \ldots, X_{gmi}) \sim \text{iid multinomial}(\theta_{g1}, \ldots, \theta_{gm}, s_i)\)
A Sample Data Set

- 100 customers in six groups
- Each customer made 15 product choices
 - Selections were generated randomly according to group-specific probabilities
- Plot matrix shows frequencies of item selections for each customer color-coded by group

R code can be found in DirichletExampleDataGen.R
Fitting the Hierarchical Dirichlet-Multinomial Model in JAGS

The JAGS Model:

```r
model{
  for (i in 1:numObs) {
    choice[i] ~ dcat(theta[grp[i],1:numItems]) # Counts of selections
  }
  for (i in 1:numGrp) {
    theta[i,1:numItems] ~ ddirm(vcounts[i,1:numItems]) # Dirichlet prior on choice prob
    alphaitm <- rep(1,numItems)
    mu[i,1:numItems] ~ ddirm(alphaitm[1:numItems]) # Uniform prior on item probabilities
    vcounts[i] <- mu[i]*conc # prior on category virtual counts
    conc ~ dgamma(1,0.1) # Gamma prior on total virtual count
  }
}
```

Parameters:
- `mu` – grand mean of item probabilities
- `conc` – sum of virtual counts
- `theta` – matrix of group x item probabilities

To Run The Model from R:

```r
numSim=5000
numBurnin=floor(1000)

numObs=numUnits*numChoices
theta=matrix(c(numGrp,numItems)) # Initialize theta as array
response.data=c("choice","grp","numObs","numGrp","numItems")
response.init=function() {
  list( 
    "mu"=array(1/numUnits,numItems),
    "conc"=20,
    "pi"=array(1/numGrp,numGrp))
}
response.init=%%
response.params=c("mu","conc","theta")
response.fit <- jags(response.data,init=response.init,response.params,model.file="DirichletExampleKnownGroups.jags",n.iter=numSim,n.burnin=numBurnin,n.chains=2)
```

Data:
- `choice` – vector of product choices made by customers
- `grp` – vector of groups to which customers belong
- `numObs`, `numGrp`, `numItems` – total number of observations, number of groups, number of items customers can choose

R code can be found in `DirichletExampleKnownGroups.R`
Results of Fitting the Model to Sample Data Set

• The data:
 • 100 customers in six groups
 • 15 choices by each customer according to group-specific probabilities

• Fitting the model:
 • 5000 iterations, 2 chains, burnin 1000
 • Used default thinning interval of 4
 • 1000 iterations saved per chain
 • Effective sample sizes of Θ_{gi} samples (according to `effectiveSize` function) range from 1738 to 2000
 • Trace plots look fairly stationary

• Results:
 • Estimates are fairly close to actual probabilities
 • MCMC estimate of total virtual count is 6.78
 • MCMC estimate of mean virtual count vector is (1.99, 2.47, 1.18, 1.15)
Kernel Density Plots for MCMC Group Mean Estimates
Predicting Sales by Group

• We can use our MCMC estimates to predict sales for each item in each group of customers
 • For each realization k of the MCMC sample
 • Generate random number n of purchases from customer arrival distribution
 • Use multinomial probabilities $\Theta_g^{(k)}$ from group g and realization k to allocate the n purchases to items
 • Tally up total purchases of each item in each group
 • Normalize to sum to 1 to obtain predictive distribution for sales of that item in that group
Extension: Discovering Latent Groups

• In many applications, we are not given group labels for the observations, but would like to discover groups from the data
 • Medical applications: would like to design treatments that work for similar clusters of patients
 • Recommending systems: would like to tailor recommendations to clusters of similar customers
 • Applications in ecology: would like to discover clusters of similar organisms

• We will try removing the group labels and seeing if the algorithm can discover the groups
 • Group labels are *latent variables* – not directly observed but inferred through a model from other observed variables
 • To infer the group labels, we need to define a prior distribution for them
 • Then we use Bayesian inference to discover the group labels
Fitting the Latent Group Model in JAGS

The JAGS Model:

```r
model{
  for (i in 1:numObs) {
    choice[i] ~ dcat(theta[grp[unit[i]],1:numItems]) # Counts of selections
  } 
  for (u in 1:numUnits) {
    grp[u] ~ dcat(pi[1:numGrp])
  }
  for (g in 1:numGrp) {
    theta[g,1:numItems] ~ ddirch(vcounts[1:numItems]) # Dirichlet prior on choice prob
    alphagrp ~ rep(1,numGrp)
    pi[1:numGrp] ~ ddirch(alphagrp[1:numGrp]) # uniform prior on group membership probs
    alphaitem ~ rep(1,numItems)
    mu[1:numItems] ~ ddirch(alphaitem[1:numItems]) # uniform prior on item probabilities
    for (i in 1:numItems) {
      vcounts[i] ~ mu[i]*conc # prior on category virtual counts
      conc ~ dgamma(1,0.1)  # gamma prior on total virtual count
    }
  }
}
```

Parameters:
- `mu` – grand mean of item probabilities
- `conc` – sum of virtual counts
- `theta` – matrix of group x item probabilities
- `grp` – latent group memberships
- `pi` – group membership probabilities

To Run The Model from R:

```r
numSim=5000 # run simulation for 5000 iterations
discard 1000 samples for burnin
numObs=numUnits*numChoices
theta=array(dim=c(numGrp,numObs,numItems)) # Initialize theta as array
response.data=c("choice","unit","numObs","numGrp","numUnits","numItems")
response.init=function() {
  list("mu"=array(1/numUnits,numItems),
       "conc"=20, "pi"=array(1/numGrp,numGrp))
}
response.init=NULL
response.params=c("mu","conc","theta","grp","pi")
response.fit <- jags(response.data, inits=response.init, response.params, model.file="Dirichlet.model.UnknownGroups.jags", n.iter=numSim, n.burnin=numBurnin, n.chains=2)
```

Data:
- `choice` – vector of product choices made by customers
- `numObs, numGrp, numItems` – total number of observations, number of groups, number of items customers can choose
- `unit, numUnits` – customer ID and number of customers

R code can be found in DirichletExampleUnknownGroups.R
Results of Fitting the Latent Groups Model to Example Data Set

Well, that didn’t work!

- 5000 iterations, 2 chains, burnin 1000
- Used default thinning interval of 4
- 1000 iterations saved per chain
- Effective sample sizes of Θ_{gi} samples (according to `effectiveSize` function) range from 6.1 to 151.0
- Trace plots of Θ_{gi} look very non-stationary
- Estimates of means of Θ_{gi} do not vary much across groups
- Kernel density estimates of Θ_{gi} are multi-modal

MCMC Point Estimates of Item Probabilities by Group (latent group model)
What Went Wrong?

- Example traceplots show a phenomenon known as *label switching*
 - Abrupt changes in mean; multi-modal density estimates
- From the model’s point of view, the labels are interchangeable
 - Changing around the order of the labels leaves the likelihood (and the posterior distribution) unchanged
 - The same group label corresponds to different groups of observations on different iterations
 - The switches can clearly be seen on the traceplots
- Technically, labels for the groups are *not identifiable*
- Label switching is a well-known and much-discussed problem in latent variable models
Should we care about label switching?

- If group means are not of direct interest, then label-switching does not matter.
- For example, the latent group model can predict a customer’s future choices using past data from that customer.
- Example:
 - Replace the last of 15 observations from a customer with NA (not available).
 - The JAGS model predicts the missing value using all other available information.
 - We can record and tabulate the predicted value by defining it as a parameter in JAGS.
- JAGS model shrinks mean of the remaining observations toward the group 2 mean.
 - The group labels were hidden from the model!

What if the group means are of direct interest?
Correcting for Label Switching

- Although the labels for the MCMC samples are not meaningful, the MCMC samples collectively contain good information on
 - Which groups of customers make similar choices to each other
 - Expected choice frequencies for similar clusters of customers
- MCMC samples can be post-processed to make the groups more homogeneous
- The `label.switching` package in R implements a several post-processing methods
- We try the `ecr.iterative.1` (first iterative version of Equivalence Classes Representatives) algorithm
 - Partition cluster assignments into equivalence classes that differ only by permutations of the class labels
 - Choose one of these equivalence classes

Results of Label Reordering

- 1000 iterations saved per chain
- Effective sample sizes of Θ_{gi} samples (according to `effectiveSize` function) range from 195.2 to 2025.0
- Trace plots of most Θ_{gi} look stationary
- Group means match rather well with means of a permutation of the original groups
- Some density estimates of Θ_{gi} are still multi-modal and have small effective sample sizes

MCMC Point Estimates of Item Probabilities by Group (latent group model with label reordering)
Kernel Density Plots for MCMC Group Mean Estimates – Latent Labels, Reordered for Group Homogeneity
Well-Separated Latent Groups are Easier to Discover

- Plot matrix shows that groups are fairly well separated except for group 3, which is inherently hard to distinguish from other groups.
- Other than group 3 (group 1 in the reordered latent variable model) the lowest effective sample size for Θ_{gi} estimates was 973.
- Group 3 effective sample sizes were all less than 500.
Summary: Discovering Latent Groups

- We considered an example in which the groups are not directly observable but are inferred from behavior of individuals.
- The model gave good predictions for an individual’s behavior given past behavior of all individuals.
 - The model used behavior of similar individuals to adjust predictions for a given individual.
- If group means are of direct interest, we need to do post-processing to correct for label switching.
 - Inferences about group means are better when groups are well separated.
Latent Dirichlet Allocation (LDA) Model

- Popular model used for natural language understanding and text retrieval (and has other applications such as finding bugs in software)
 - There are M documents
 - Each document has N words
 - The n^{th} word in the m^{th} document is W_{mn}
 - W_{mn} has an associated “topic” Z_{mn}
 - The topics Z_{mn} are independent draws from a K-dimensional multinomial distribution, where K is the number of topics. The parameter θ_m of this distribution depends on the document.
 - The words W_{mn} are independent draws from a L-dimensional multinomial distribution, where L is the number of words.
 - The parameter β_{zm} of this distribution depends on the topic.
- The words are observed; the topics are discovered from the document corpus.
- A popular inference method is collapsed Gibbs sampling (marginalize out θ and sample Z from its marginal distribution)

LDA Topics from Enron Email Dataset

- About 500,000 emails generated by 500 people
- Made public by Federal Energy Regulatory Commission in wake of Enron collapse and scandal
- Widely used by machine learning researchers

https://www.cs.cmu.edu/~./enron/
Recap: The Bayesian Approach

• The Bayesian approach is:
 • A way of thinking about problems of inference and decision-making under uncertainty
 • A set of tools for applying this way of thinking to practical problems

• A Bayesian can answer the questions a decision-maker cares about:
 • What is the probability this event will happen?
 • What is the probability this parameter falls in a certain range?
 • What is my best decision in these circumstances?

• When we have a reasonable amount of data and weak prior information, we can give many standard statistical tools a Bayesian interpretation (at least approximately)

• Recent advances in computation have made Bayesian methods practical for many complex real-world problems
Fundamental Ideas of the Bayesian Approach
[1 of 2]

- Probability expresses rational degrees of belief about uncertain phenomena
- Rational decision makers choose according to maximum expected utility
- Inference is belief dynamics
 - Prior beliefs are updated with evidence
 - Posterior beliefs at one stage become prior beliefs for next stage
 - Predict next stage using all knowledge up to present stage
 - Laplace: Probability is common sense reduced to calculation
- Conjugate prior / likelihood pairs simplify Bayesian inference
 - Posterior distribution and predictive distribution can be found exactly
 - Convenient and useful when a good model for the data
Fundamental Ideas of the Bayesian Approach [2 of 2]

• Approximation methods are important when exact results are unavailable
 • There is a rapidly growing literature in approximation methods for Bayesian inference
 • Markov Chain Monte Carlo (MCMC) is a general-purpose class of approximation methods that helped spark the Bayesian revolution

• Hierarchical models use structural assumptions to achieve better statistical power without sacrificing realism
 • Information sharing among related parameters

• Posterior predictive model evaluation can help assess whether model is adequate for the intended purpose
 • “All models are wrong but some models are useful” - Box
Bayesian and Frequentist Statistics

• Most statistics courses are taught from the frequentist perspective.

• Frequentists
 • View probability as objective property of random processes.
 • Assign probabilities to collectives but not individual events.
 • Condition on parameters, treat data as probabilistic.

• Subjectivists
 • View probability as rational degrees of belief about uncertain phenomena.
 • Assign probability to any unknown, including individual events.
 • Condition on knowns, treat unknowns as probabilistic.

• Frequentist analyses can often be given a Bayesian interpretation.
 • Often good approximation if large sample and weak prior information.
Unit 9: Summary and Synthesis

- We reviewed the fundamental principles of the Bayesian approach to inference and decision-making
- We introduced the Multinomial / Dirichlet conjugate pair
- We considered an example in inventory management and sales prediction
 - Predicted future sales of each product given data on past sales
 - Decided how much of each product to stock to maximize profits
 - Used hierarchical model to predict sales for sub-groups of customers
 - Used hierarchical model to discover latent clusters of customers with similar buying patterns
- We briefly introduced the latent Dirichlet allocation model to discover latent topics in collections of documents