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Abstract 
Intervention theories of causality define a relationship as causal if appropriately specified interventions to 
manipulate a putative cause tend to produce changes in the putative effect. Interventionist causal theories are 
commonly formalized by using directed graphs to represent causal relationships, local probability models to 
quantify the relationship between cause and effect, and a special kind of conditioning operator to represent the 
effects of interventions. Such a formal model represents a family of joint probability distributions, one for each 
allowable intervention policy. This paper interprets the von Neumann formalization of quantum theory as an 
interventionist theory of causality, describes its relationship to interventionist theories popular in the artificial 
intelligence literature, and presents a new family of graphical models that extends causal Bayesian networks to 
quantum systems. 

1 INTRODUCTION 
Causality is fundamental to artificial intelligence. Intelligent systems must choose actions that are likely to 
bring about their goals, must monitor situations to detect when plans are going awry, and must modify their 
plans in appropriate ways in response to unexpected occurrences.  Intelligent systems must also learn about 
causal relationships from interacting with and observing their environments. These capabilities require 
reasoning about, drawing inferences about, and acting appropriately with respect to, cause and effect 
relationships in the world.  
Causality has been a contentious topic in philosophy and the sciences. The intuitive notion that manipulating 
causes produces changes in effects has been difficult to formalize as a scientifically rigorous, non-circular 
theory of causation (cf., Woodward, 2001). Another challenge has been the development of learning methods 
that can distinguish spurious correlation from genuine causation. In recent years, the artificial intelligence and 
statistics communities have converged on graphical models as a formal language for expressing cause and 
effect relationships. Causal graphical models augment graphical probability models with assumptions about 
the effects of external interventions on the probabilities encoded by the model.  
For example, causal Bayesian networks (Pearl, 2000) augment ordinary Bayesian networks with a set of 
“local surgery” operators that specify how the joint probability distribution behaves with respect to external 
interventions.  The mathematics of local surgery formalizes the idea of causal relationships as stable physical 
mechanisms, each of which can be perturbed by local interventions without disturbing the others. 
Formally, a causal Bayesian network (CBN) for random variables X1, …, Xn consists of a directed acyclic 
graph G whose nodes correspond to the Xi; a joint distribution P(⋅) that respects the independence 
relationships encoded by G, and an operator do(Xi=xi) for each node of the graph that represents an 
intervention to set Xi to the value xi. The operator do(Xi=xi) disconnects Xi from its parents and sets its value to 
xi, while leaving the remainder of the causal relationships and local probability models undisturbed. That is, if 
V = (Xi1, …, Xik) denotes a subsequence of the Xi, and P*(X1, …, Xn | do(V=v)) denotes the probability 
distribution obtained by applying the do(·) operator to set the random variables in V to the values v = (xi1, …, 
xik), then P*(X1, …, Xn | do(V=v)) is also a Bayesian network with graph G. In this new Bayesian network, the 
local distributions for variables in V place probability 1 on V=v. That is, Pr*(Xi = xi | pa(Xi)) = 1 for i = i1, …, 
ik, where pa(Xi) denotes the parents of Xi in G. The local probability models for the other random variables 
remain unchanged. That is,  P*(Xi | pa(Xi)) = Pr(Xi | pa(Xi)) for i ≠ i1, …, ik. A causal Bayesian network admits 
two kinds of conditioning: ordinary Bayes conditioning P(Y|V=v) and causal conditioning, i.e., P(Y| do(V=v)).  
Pearl assumes that each cause and effect relationship corresponds to an autonomous physical process 
involving a relatively small number of variables. A causal Bayesian network describes a collection of such 



 

relationships that interact with each other via shared variables. It provides a model to predict the effects of 
local interventions that change one or more of the variables without disturbing any of the other mechanisms.  
Pearl explicitly adheres to the classical view of physical causation, in which all mechanisms are deterministic 
and probability arises from ignorance of boundary conditions. Although he argues forcefully that a formal 
mathematics of causation is needed to guard against the errors and confusions of unaided intuition, he argues 
for classical determinism on the basis of its intuitive appeal:  

… The few esoteric quantum mechanical experiments that conflict with the Laplacian conception evoke 
surprise and disbelief… Our objective is to preserve, explicate and satisfy – not destroy – those intuitions.  

Classical physics has been superseded by the explicitly probabilistic quantum theory. As formalized by von 
Neumann (1955), quantum theory can be understood as an interventionist causal theory of the kind 
popularized by Pearl.  Extending graphical model based theories of causation into the quantum realm opens 
the possibility of a theory of cause and effect that is in full agreement with fundamental theory of the physical 
world. 

2 QUANTUM THEORY  
According to the classical nineteenth century worldview, physical systems followed precisely defined 
trajectories that evolved according to deterministic laws. Physical theory was causally closed, having no place 
for interventions into its unfolding. Early in the twentieth century, this classical picture was overturned by a 
new fundamental physical theory.  
Unlike its classical predecessor, quantum theory is stochastic and causally open. Quantum theory represents 
not only the passive evolution of closed physical systems, but also the effects of interventions. Bohm (1951) 
said that the quantum state has been called a wave of probability, but it is more accurate to call it a “wave 
from which many related probabilities can be calculated.”  In other words, the quantum state predicts not what 
will occur, nor a single probability distribution for what will occur, but rather a set of probability distribu-
tions, one for each conceivable intervention that could be made on a quantum system. An intervention results 
in a stochastic transformation from the state just prior to the intervention to one of the allowable results of the 
intervention.  Quantum theory specifies a probability distribution for the outcome of each such intervention. 
Thus, quantum theory is naturally viewed as an interventionist theory of causality of the sort that has become 
popular recently in statistics and the social sciences (Woodward, 2001). 

2.1 QUANTUM STATES 
States of quantum systems are represented mathematically as density operators acting on a Hilbert space H, 
called the state space of the system. A density operator can be identified with a positive, unit-trace complex-
valued square matrix. The dimension of the matrix is a characteristic of H, and can be finite or countably 
infinite.  
States of a composite quantum system are represented as density operators on the tensor product H1⊗…⊗Hp 
of the Hilbert spaces H1, H2, …, Hp for the component systems. Tensor product spaces are the quantum 
analogue of Cartesian product spaces. A density operator on H1⊗…⊗Hp is called a product state if it can be 
written as σ1⊗σ2⊗…⊗σp, where σi is a density operator on Hi. States that can be written Σi qi 
σi1⊗σi2⊗…⊗σip, where the qi are positive real numbers summing to 1, are called separable states. States that 
are not separable are called entangled. Entangled quantum systems are responsible for many of the most 
intriguing and puzzling features of quantum theory. Entangled systems can exhibit long-distance correlations 
that cannot be explained by local hidden variable theories. Correlations due to entanglement do not reflect 
causal relationships, in a sense to be made precise below. 
Given a quantum state σ on a tensor product space H1⊗…⊗Hp, a reduced density operator σi on the ith 
Hilbert space can be obtained via an operation called the partial trace.  The reduced density operator is the 
quantum analogue of the marginal distribution for a classical joint distribution. The reduced density operator 
correctly describes the statistical behavior of observable quantities of a subsystem, when attention is restricted 
to quantities pertaining to the given subsystem.  
Cerf and Adami (1999) propose a quantum analogue for the classical conditional distribution. Warmuth and 
Kuzmin (2006) extend Cerf Adami’s conditional density operators to propose a generalization of the Bayesian 
probability calculus to density matrices. These authors do not address causality. 



 

2.2 EVOLUTION OF QUANTUM SYSTEMS 
Traditional quantum theory as formalized by von Neumann (1955) specifies two kinds of transformations 
quantum systems can undergo. One of these is continuous and reversible evolution of systems isolated from 
environmental effects.  If the initial state for an isolated quantum system is the density operator σ(t0), then at 
time t1 > t0 the state will be: 

 σ(t1) = U(t1-t0) σ(t0) U(t1-t0)*, (1) 

where U(t) is a unitary operator1 given by: 

 U(t) = exp{ -iHt/h-  }, (2) 
H is a Hermitian (i.e., self-adjoint) operator on H called the Hamiltonian, and h-  is Planck’s constant divided 
by 2π. 
The other kind of transformation is a stochastic state change that has been called state reduction, projective 
measurement, or more picturesquely, collapse.  The term reduction is preferred here because it is more neutral 
than collapse, and emphasizes that stochastic transformations apply to a broader class of problems than 
measurements performed in laboratory experiments. Reduction is represented mathematically as a discontin-
uous transformation at time t from the state σ(t-) to the state σ(t+). With the reduction event is associated a set 
{Pi} of mutually orthogonal projection operators on H that sum to the identity, i.e.: 

i. Pi
2 = Pi;  

ii. PiPj = 0 for i≠j; and  
iii. Σi Pi = I.  

The possible outcomes of the reduction are density operators Piσ(t-)Pi/Tr(σ(t-)), where Tr(·) denotes the trace 
operator, or sum of diagonal elements of the matrix. Division by Tr(σ(t-)), called normalization, preserves the 
unit trace property of density operators. Conditional on the time t at which the reduction occurs and the set 
{Pi} of projection operators, the outcome probabilities are given by the Born rule: the probability that the 
outcome of applying the projection set {Pi} when the system is in state σ(t-) is given by: 

 Tr(Pi σ(t-)Pi)/Tr(σ(t-)). (3) 

Because there are at most n mutually orthogonal projection operators of dimension n, the number of possible 
outcomes of any reduction can be no more than the dimension of the system’s Hilbert space. Thus, a density 
operator on an n dimensional Hilbert space is the quantum analogue of a probability distribution for a random 
variable with n possible outcomes. Whereas a classical random variable represents outcome probabilities for a 
single experiment with a given set of n possible outcomes, a density operator represents outcome probabilities 
for an infinite collection of experiments, each with a different set of n possible outcomes. In particular, 
quantum probabilities are contingent: if the experiment associated with the set {Pi} is carried out on a system 
in state σ(t-), then the outcome probabilities are given by Equation (3).  On the other hand, if a different 
experiment is carried out, then the outcome probabilities are the Born probabilities for that experiment. 
Quantum theory as thus formulated is an explicitly temporal theory. Unitary evolution proceeds from past to 
future, and reductions are instantaneous discontinuous state changes. In relativistic physics, the temporal 
ordering of two events may depend on the frame of reference. Quantum theory as described in this section is 
consistent with relativity theory if it is assumed that reductions occur along spacelike surfaces (cf. Stapp, 
2001). 

2.3 QUANTUM ONTOLOGY 
Although the empirical predictions of quantum theory have been confirmed to a high degree of accuracy, the 
ontological status of quantum probabilities and reductions are a matter of intense controversy. Many scientists 
subscribe to Einstein’s view that “God does not play dice,” and are reluctant to embrace an intrinsically 
stochastic theory as fundamental. Many are also uncomfortable with the incompleteness of quantum theory. 
Quantum theory makes predictions conditional on interventions, but has nothing to say about the laws 
governing the occurrence of interventions. The founders of quantum theory assigned interventions to the free 
choice of human observers, and placed that choice outside of quantum theory.  There have been many 
                                                             
1 The operator U is unitary if its inverse U-1 is equal to its adjoint U*. 



 

attempts to found quantum theory on unitary evolution alone, and to explain reductions as artifacts of 
applying the partial trace operator to restrict attention to subsystems entangled with their environments. 
Although these theories have passionate advocates, controversy remains over whether dispensing with 
reductions is possible.  
Because there is no question that von Neumann theory is in accord with observation, and because it provides 
a natural quantum analogue to classical causal Bayesian networks, this paper adopts the von Neumann 
formulation. Just as with causal Bayesian networks, the mathematical formalism of quantum causal networks 
can be adopted as a pragmatic computational tool regardless of one’s metaphysical position regarding the 
ontological status of reductions. A deeper debate on the ontology of quantum theory is beyond the scope of 
this paper. 

2.4 QUANTUM OPERATIONS 
Quantum operations provide a unified representation for transformations of isolated systems, systems that 
interact with their environments, and reductions. The quantum operations formalism is equivalent to the von 
Neumann formalism described above, in that any quantum operation can be represented as a composition of 
unitary operators, stochastic projections, and partial traces (Nielsen and Chuang, 2000). Because of their 
generality, quantum operations are seeing wide application to analyzing the behavior of quantum systems, 
especially in quantum computing and quantum information theory. 
Quantum operations are especially useful building blocks for a theory of quantum causality, because they can 
describe quantum transformations in which the input and output systems are different. That is, quantum 
operations can represent interactions in which the behavior of one system causes changes in the state of a 
second system, without requiring an explicit representation of the prior state of the affected system or the 
post-interaction state of the system producing the effect.  
A quantum operation A(σ) is a linear map that transforms operators on an input Hilbert space to operators on 
an output Hilbert space, such that the following conditions are satisfied: 

1. Tr(A(σ)) ≤ Tr(σ); 
2. A(⋅) is a completely positive map. That is, if σ is a positive operator on the input space, then A(σ) is a 

positive operator on the output space. Furthermore, if n is a positive integer, ρ is a positive operator on 
the tensor product of an auxilliary n-dimensional Hilbert space and the input space, and Ip is the identity 
operator on the auxiliary space, then  (Ip⊗A)(ρ) is a positive operator. 

The partial trace operation that maps a density operator for a composite system to the reduced density 
operator for a subsystem is an example of a quantum operation. Unitary transformations are also quantum 
operations.  If P is a projection operator, the map from σ to PσP is a quantum operation that does not preserve 
the trace.  
To satisfy the requirements of relativity theory, if a quantum operation represents temporal evolution, the 
output system must be localized within the future light cone of the input system. In the case of stochastic 
reduction operations or partial trace operations in which the output represents a subsystem of a composite 
system, the output system must not overlap the past light cone of the input system. 

2.5 PROPER AND IMPROPER MIXED STATES 
A density operator is called a pure state if it has rank one; otherwise, it is called a mixed state. If σ is a rank k 
density operator on a Hilbert space H, then there exist pure states σ1, …, σk, and positive real numbers p1, …, 
pk, such that: 

 Σi pi = 1 and Σi piσi = σ. (4) 

Because of this weighted sum representation, mixed states have been interpreted as representing uncertainty 
about the state of a system. That is, the mixed state Σi piσi can represent a system that has probability pi of 
being in pure state σi. This decomposition as a weighted sum of pure states may not be unique. A state σ = 
Σi piσi = Σi riρi with two different decompositions as probability-weighted sums of pure states could represent 
either a system having probability pi of being in state σi, or a system having probability ri of being in state ρi.  
When there is entanglement, the reduced density operator of a subsystem may be in a mixed state even when 
the composite system is in a pure state. Such a subsystem cannot be said to possess a definite state of its own, 



 

independent of its environment. Mixed states reflecting uncertainty about definite pure states are called proper 
mixtures; mixed states arising from entanglement are called improper mixtures (d’Espagnat, 1976).  
For subscribers to an ontology that dispenses with reductions, all mixtures are improper. Nevertheless, there is 
a useful distinction between systems that behave as proper or improper mixtures relative to a given 
experimental context (Timpson and Brown, 2005). Thus, statements about proper and improper mixtures can 
be interpreted, with appropriate qualifications regarding the experimental context, within a no-reduction 
ontology. Proper mixtures can be empirically distinguished from improper mixtures if the system and its 
environment can be observed jointly, but cannot be empirically distinguished if observations are restricted to 
the system in isolation. 
In the formalism developed here, improper mixtures are represented as mixed states, and proper mixtures are 
represented as probability distributions over the mixture components.  Trace-preserving quantum operations 
are interpreted as transitions that do not have multiple physically distinguishable outcomes. If outcomes of a 
transition are distinguishable but unknown, then its result is represented as a probability distribution over the 
distinguishable outcomes. 
Trace-reducing quantum operations represent stochastic transformations with physically distinguishable out-
comes. Consider a set A1(⋅), …, An(⋅) of trace-reducing quantum operations such that Σi Tr(Ai(σ)) = Tr(σ) for 
all σ. This set represents a situation in which a transformation is chosen by a stochastic rule. The probability 
that the ith transformation occurs is given by Tr(Ai(σ)), and the result of the ith transformation on input σ is 
Ai(σ)/Tr(σ). We make an explicit distinction between the proper mixture representing ignorance of the result 
of applying the set of trace-reducing operations A1(⋅), …, An(⋅), and the improper mixture that results from 
applying the trace-preserving operation Σi Ai(⋅). The result of the former is represented in our formalism as a 
probability distribution over states; the result of the latter is represented as a mixed state. 

2.6 FIDUCIAL PROJECTIONS 
When the state space has dimension n, there exists a set F1, …, Fn2 of projection operators, such that the state 
is characterized by the Born probabilities associated with the Fi (Nielson and Chuang, 2000). Any such 
collection {Fi} is called a set of fiducial projections (Hardy, 2001).  If {Fi} is a fiducial set, and σ and ρ are 
two density operators such that Tr(FiσFi) = Tr(FiρFi) for i = 1, …, n2, then σ = ρ. The fiducial projections can 
be chosen to have rank 1. In this case, the fiducial projections are themselves density operators, and they 
represent pure states of the system.  Because Fi is a projection operator with rank 1, it can be shown that if 
FiσFi ≠ 0, then FiσFi/Tr(FiσFi)  = Fi.   
A fiducial projection operator Fi thus represents both a pure state of the system and an intervention that has Fi 
as one of its possible outcomes. If the intervention Fi is applied to a system whose pre-intervention state is σ, 
then the probability is Tr(FiσFi) that the post-intervention state is to Fi. Because of noncontextuality, these 
probabilities hold for any intervention in which Fi is one of the possible outcomes, regardless of the other 
possible outcomes of the intervention. 
Just as quantum states can be characterized by the probabilities associated with fiducial operators, quantum 
operations can be characterized by how they act on fiducial operators.  Specifically, let F1, …, Fn2 be a set of 
fiducial projectors on an n-dimensional input Hilbert space and let G1, …, Gm2 be a set of fiducial projectors 
on an m-dimensional output space. Suppose that A(⋅) and A’(⋅) are  completely positive maps such that 
Tr(GjA(Fi)Gj) = Tr(GjA’(Fi)Gj) for i=1,…,n and j=1,…,m. Then A(⋅) is equal to A’(⋅) (Nielsen and Chuang, 
2000, sec. 8.4.2). 

3 QUANTUM CAUSAL NETWORKS 
Quantum causal networks formalize cause and effect relationships in quantum systems. In a QCN, a graph 

represents dependence relationships, quantum operations represent quantitative information about state 
evolution, and intervention operators represent reductions. QCNs differ from Tucci’s (1995) causal Bayesian 
networks (QBNs), in that QCNs formalize cause and effect relationships in terms of effects of interventions, 
whereas Tucci’s quantum Bayesian networks generalize non-causal Bayesian networks to quantum systems. 
 

3.1 SEQUENCED ASSOCIATION GRAPHS 
In causal Bayesian networks, the arcs are directed and the probabilistic dependencies are causal.  Of course, it 
is easy to find real-world examples of correlations that do not correspond to causal relationships. 



 

Nevertheless, outside the quantum realm, it is 
generally assumed that Riechenbach’s principle of 
common causes holds. That is, when two quantities 
are correlated, it is assumed either that one is a cause 
of the other or that there is another variable that is a 
common cause of both. When the principle of 
common cause holds, one can construct a causal 
Bayesian network by inserting variables as needed to 
represent common causes of correlated variables. 
In quantum systems, although entanglement can give 
rise to correlations between spacelike separated 
events, causal influence can operate only between 
timelike separated events, and only from past to 
future. This fundamental difference between 
correlations involving spacelike and timelike 
separated events is represented in sequenced 
association graphs by using directed arcs to represent 
causal influences from the past to the future, and 
undirected arcs to represent contemporaneous 
correlations between entangled systems. 

Definition 1: Let G be a graph, and let A and B be nodes of A. Then A and B are contemporaneous if (i) there 
is an undirected edge connecting A and B, or (ii) there is an undirected edge between A and a node 
contemporaneous with B.  If A and B are contemporaneous, we write A ~T B. 
Definition 2: Let G be a graph, and let A and B be nodes of A. Then A precedes B if (i) there is a directed 
edge from A to B, or (ii) there is a directed edge from A to a node that precedes B. If A precedes B, we write A 
 ! T B. 
A straightforward inductive argument shows that ~T is an equivalence relation and  ! T is transitive. 
Definition 3: A graph G is a sequenced association graph (SAG) if there is no pair of nodes A and B such that 
(i) A precedes B and (ii) B precedes or is contemporaneous with A. 
The directed arcs in a sequenced association graph establish a partial order on the nodes. When a SAG is used 
to model a physical process, each node is associated with a physical system localized within a region of 
spacetime. Directed edges connect timelike separated systems, and are oriented from past to future. 
Undirected edges connect spacelike separated systems that are correlated due to entanglement.   
Because contemporaneity is an equivalence relation, it partitions the nodes of a SAG into equivalence sets. 
The elements of this partition are called CN-sets.  
Definition 4: Let G be a sequenced association graph. A CN-set is a maximal subset of mutually 
contemporaneous nodes of G. A root CN-set is a CN-set in which none of the arcs in G enters any of the 
nodes in the CN-set. A CN-set that is not a root CN-set is called a child CN-set. 
Figure 1 shows a SAG containing five CN-sets, enclosed in dotted ovals and numbered 1A through 4.  The 
numbering scheme indicates the time order if it can be established from the graph. Letters are appended to the 
numbers to label nodes for which the order cannot be distinguished. The time ordering of CN-sets 1A and 1B 
cannot be determined from the graph; the CN-sets 2 through 4 follow these sets in temporal order.  

3.2 QUANTUM CAUSAL NETWORKS 
A quantum causal network (QCN) is a quantum analogue to a CBN. Like a Bayesian network, a QCN uses a 
graph to represent qualitative relationships and local probability models to represent numerical likelihood in-
formation. The graph for a QCN is a sequenced association graph. Numerical likelihood information is 
represented with density operators and quantum operations.  
Definition 5: Let G be a SAG, and let {X1, …, Xk} be a child CN-set for G. A node Y is an influencing parent 
for the CN-set if G has a directed edge from Y to one of the Xi, and a non-influencing parent for the CN-set if 
it is contemporaneous to a parent for the CN-set. 

 
Figure 1: Sequenced Association Graph 



 

Definition 6: Let G be a SAG, let {X1, …, Xk} be a CN-set for G, and let Hi denote the Hilbert space 
associated with Xi. Let {W1, …, Wr} denote the set of influencing and non-influencing parents for {X1, …, 
Xk}, and let Fi denote the Hilbert space associated with Wi.  A local distribution Δ(⋅) for {X1, …, Xk} is de-
fined as: 

1. If {X1, …, Xk} is a root CN-set, then Δ(X1, …, Xk) consists of a finite or countably infinite set {Δi(X1, …, 
Xk)} of density  operators on H1⊗…⊗Hk such that Σi Δi(X1, …, Xk) is equal to the identity; 

2. If {X1, …, Xk} is a child CN-set, then Δ(X1, …, Xk | W1, …, Wr) consists of a finite or countably infinite 
set {Δi(X1, …, Xk | W1, …, Wr)} of quantum operations mapping F1⊗…⊗Fr to H1⊗…⊗Hk, such that 
Σi Tr(Δi(X1, …, Xk | W1, …, Wr)) is trace-preserving. 

Definition 7: Let H1⊗…⊗Hn be a product space. A fiducial reduction is a set of projection operators 
satisfying conditions i-iii, in which each projector in the set is a product F1⊗…⊗Fn of fiducial projectors. 
Definition 8: Let G be a SAG, and let {X1, …, Xk} be a root CN-set. The local distribution Δ(X1, …, Xk) 
respects G if for any fiducial reduction applied to Δ(X1, …, Xk) and any i, the conditional probability of Xi 
given X1, …, Xi-1, Xi+1, …, Xk depends only on the neighbors of Xi in G. 
Definition 9: Let G be a SAG, let {X1, …, Xk} be a child CN-set, and let {W1, …, Wr}  denote its influencing 
and non-influencing parents. The local distribution Δ(X1, …, Xk | W1, …, Wr) respects G if the following 
condition holds. For i=1,…, r, let Fi denote a  fiducial projector on the Hilbert space for Wi. Let Δ(X1, …, Xk | 
W1, …, Wr)(F1⊗…⊗Fr) denote the quantum operation Δ(X1, …, Xk | W1, …, Wr) applied to the product 
projector F1⊗…⊗Fr.  Then the conditional probability assigned by Δ(X1, …, Xk | W1, …, Wr)(F1⊗…⊗ Fr) to 
Xi given X1, …, Xi-1, Xi+1, …, Xk depends only on those Xj that are neighbors of Xi in G and those Wj that are 
parents of Xi in G.  
Definition 10: Let G be a sequenced association graph. Let {Hi} be a collection of Hilbert spaces, one for 
each node Xi of G.  Let {Pr(⋅)} be a set of local distributions, one for each CN-set of G. Then Q = (G, {Hi}, 
{Pr(⋅)}) is a quantum causal network if each of the local distributions respects G. 
The density operator for a root CN-set of a QCN requires at most n2-1 real numbers to specify, where n is the 
product of the dimensions of the Hilbert spaces for the nodes in the CN-set. The quantum operation for a child 
CN-set requires at most n2(m2-1) real numbers, where m is the product of the dimensions of the Hilbert spaces 
for the parent nodes and n is the product of the dimension of the nodes in the child CN-set. The independence 
assumptions encoded in G reduce the number of parameters needed to specify these local distributions.  

3.3 THE JOINT DISTRIBUTION FOR A QCN 
A QCN induces a joint density operator on the tensor product of the Hilbert spaces associated with the nodes 
of its SAG. This joint density operator can be constructed by propagating the quantum operations forward in 
the direction of the causal arcs. This propagation process induces a density operator on each CN-set. For 
brevity, we sketch the construction for a two-node QCN with graph X → Y. The extension to the general case 
is straightforward. 
First, consider the root node X local distribution {Δi(X)} for X. We define a reduced density operator on HX as 
σX = Σi Δi(X). Any density operator can be expanded as a mixture of mutually orthogonal 1-dimensional 
density operators (cf., Nielsen and Chuang, 2000).  Thus, we can write 

 !
X
= "

i
Q
i

i

# ,  (5) 

where the Qi are mutually orthogonal one-dimensional projection operators on HX, and the θi are non-negative 
numbers that sum to 1.  
Now consider the local distribution {Δi(Y | X)} for Y. We define the trace-preserving quantum operation A(Y | 
X) = Σi Δi(Y | X). For each i, we can write 

  
 

AY |X (Qi ) = !ijRij
j

" ,
 (6) 

where the Ri are mutually orthogonal one-dimensional projection operators on HY, and the ρi are non-negative 
numbers that sum to 1. Note that the mixture components Ri1, Ri2, … for AY|X(Qi) may be different for 
different i.  



 

Next, we form a joint density operator on HX⊗HY as follows: 

 ! XY = "i#ijQi

i, j

$ % Rij .
 (7) 

 
The density operator τXY represents a quantum state for the undisturbed two-node QCN. Applying the partial 
trace yields density operators σX and σY to represent the states of the X and Y subsystems of the undisturbed 
joint system. 
This construction generalizes in a straightforward manner to construct a density operator on the tensor product 
space H1⊗…⊗Hn. A reduced density operator for each node can be obtained via the partial trace operation.  
These density operators represent undisturbed evolution of the quantum system. Furthermore, it is 
straightforward to show that there is a representation of this joint density operator as a mixture of density 
operators, in which the joint distribution represented by the mixture weights is represented by a graphical 
model with graph G and local distributions given as follows:  

1. If {X1, …, Xk} is a root CN-set, then (X1, …, Xk) has value Δi(ξ1, …, ξk)/Tr(Δi(ξ1, …, ξk)) with 
probability Tr(Δi(ξ1, …, ξk)); 

2. If {X1, …, Xk} is a child CN-set, then conditional on the state ω of (W1, …, Wr), the CN-set (X1, …, Xk) 
has value Δi(ξ1,…,ξk | ω1,…,ωr)/Tr(Δi(ξ1,…,ξk | ω1,…,ωr)) with probability Tr(Δi(ξ1, …, ξk | ω1, …, 
ωr)). 

4 EFFECTS OF INTERVENTIONS 
Just as in causal Bayesian networks, a QCN encodes a model not just for undisturbed evolution of a system, 
but also for its response to interventions.  In our discussion of interventions to a QCN, we consider two kinds 
of interventions. The first type of intervention is a reduction operator rd(X→{Pi}) corresponding to a 
stochastic transformation of the state into its projection onto the subspace associated with one of the Pi. The 
second type of intervention is a do(X=ξ) operator like the one for causal Bayesian networks.  
Only the first type of intervention is covered by the mathematical rules of quantum theory. Furthermore, its 
ontological status is the subject of heated debate. Nevertheless, in practical applications and informal 
discussions of quantum experiments, it is common to postulate that a density operator has been set to a known 
state by an experimenter. In other words, do(X= ξ) operations are important in informal discourse and 
pragmatic applications of quantum theory. This situation is very like the situation in statistics, in which there 
is an extensive and well-developed formal mathematics of joint probability distributions, but causality has 
until recently been treated informally and pragmatically. Just as the recently developed formal mathematics of 
causality has led to new insights and methodologies in the realm of classical systems, extensions of this 
research to the quantum domain may lead to new insights about causality in quantum systems. 
We begin our treatment of interventions by considering the application of the reduction operator rd(X→{Pi}) 
to a deterministic QCN Q, in which every local distribution has a single component density operator (for a 
root CN-set) or quantum operation (for a non-root CN-set). An intervention at a single target node T of Q is 
modeled as follows.  Let CN(T) denote the CN-set of T.  Let HCN(T) denote the associated Hilbert space, and 
let σCN(T) denote the reduced density operator for CN(T). Let P1, …, Pn be a set of one-dimensional2 
orthonormal projection operators (i.e., satisfying Conditions i-iii above) on HCN(T), such that each Pi acts as 
the identity on all nodes except T.  The intervention results in a new QCN Q*, where: 

1. The graph G* of Q* is obtained from graph G of Q by removing all directed arcs entering CN(T) and all 
undirected arcs between T and members of its CN-set. 

2. The new local distribution Δ*(CN(T)) is the set {PiσCN(T)Pi}. That is, the possible values for CN(T) are 
σi = PiσCN(T)Pi/Tr(PiσCN(T)Pi), for i = 1, …, n. The  probability of obtaining σi is Tr(PiσCN(T)Pi). Note that 
all independence relationships among nodes in CN(T) that existed in σCN(T) are preserved in σi. 
Therefore, σi respects G*. 

3. The local distributions for all nodes not in CN(T) are unchanged. 

                                                             
2 If the projection operators have dimension greater than one, then Rule 1 must be modified to account for the possibility that entanglement with  the 
node’s CN-set may not be destroyed. 



 

As a result of the intervention, the target node takes on one of the allowable results for the projection set 
associated with the reduction operation. If the target node is entangled with contemporaneous neighbors, 
intervening at the node may affect these neighbors even though the projector acts as the identity on these 
nodes. Post-intervention states for descendants of the target node’s CN-set are obtained by forward 
propagation. For this reason, when interventions correspond to non-commuting operators, one must specify an 
order in which they are to be applied. 
To extend the discussion to interventions in proper mixture QCNs, we note that proper and improper mixtures 
behave identically with respect to forward inference, but differ in the treatment of backward inference from 
effects to causes. Specifically, when a reduction is applied to an improper mixed state, the result is to 
disconnect the node from its parents and replace its value stochastically with one of the possible outcomes.  
No backward inference to the parent is licensed, except to note a contradiction if a result is observed whose 
Born probability is zero. The situation is different with a proper mixture. With a proper mixture, the result of 
a reduction at a child node provides information about which mixture component obtains at the parent node.  
These informal ideas are formalized by the following rules for interventions at a target node T in a general 
QCN Q. Again, let CN(T) denote the CN-set of T.  Let HCN(T) denote the associated Hilbert space, and let 
σCN(T) denote the reduced density operator for CN(T). Let P1, …, Pn be a set of one-dimensional 2orthonormal 
projection operators (i.e., satisfying Conditions i-iii above) on HCN(T), such that each Pi acts as the identity on 
all nodes except T.  The intervention results in a new QCN Q*, where: 

1. The graph G* of Q* is obtained from graph G of Q by removing any directed arcs entering CN(T) from 
parents with only a single possible value, as well as any undirected arcs between T and members of its 
CN-set that have only a single possible value. 

2. The new local distribution Δ*(CN(T)) consists of the transformations   {PiτmPi}, where τm is a joint 
density operator for CN(T), and τm has non-zero weight under the undisturbed distribution. That is, the 
possible values for CN(T) are τim = PiτmPi/Tr(PiτmPi), for i = 1, …, n, and τm as above.  The probability 
of obtaining τim given the state of the parent CN-set is obtained via the Born probability rule.  Note that 
all independence relationships among nodes in CN(T) that existed in the undisturbed distribution are 
preserved in τim. Therefore, τim respects G*. 

3. The local distributions for all nodes not in CN(T) are unchanged. 
In a mixture QCN, applying a reduction operator to a node X does not disconnect X from its parents.  
We now consider how to represent a local surgery operator do(X=ξ), corresponding to intervening and setting 
X to the value ξ. As noted above, this kind of intervention is often employed informally in descriptions of the 
set-up for quantum mechanical experiments, but there is no physical theory for how such interventions are 
effected. Our representation must satisfy two criteria. First, we want the intervention to disconnect X from its 
parents, even in the case of a proper mixture.  That is, the process of setting X to the value ξ should occur 
regardless of the unknown value of pa(X). Second, the intervention must not have a causal impact on variables 
entangled with X. To accomplish this, the operator do(X=ξ) acts as follows.  First, we apply a reduction 
operator that projects X to a proper mixture with the same mixture weights as its reduced density operator in 
the undisturbed model, and acts as the identity on the other nodes in CN(X). This results in a new QCN in 
which there are no undirected arcs involving X. Next, we remove all arcs entering X, set the local distribution 
of X to place probability 1 on the value ξ, and leave all other mechanisms in the QCN undisturbed.  This 
procedure has the desired properties.  

5 DISCUSSION 
The predictions of quantum theory have been subjected to extensive empirical testing for a wide variety of 
quantum processes, with strong agreement between theory and empirical results. However, quantum theory as 
presently formulated contains a major explanatory gap, having nothing to say about when a reduction will 
occur and which set of orthogonal projection operators corresponds to the possible results. Despite intense 
effort over many years, no one has yet found a satisfactory way to dispense with reductions and still bring 
quantum theory into concordance with the results of measurements, and physicists disagree strongly about the 
feasibility of the endeavor. Because reductions are associated with scientists performing measurements, the 
lack of a theory for state reduction has been called the “measurement problem.” 
Rather than attempt to dispense with reductions, we formalize reductions as external interventions in a causal 
graphical model formulation of quantum theory.  The formalism is consistent with standard von Neumann 



 

quantum theory, but is explicated in a language that ties it to recent work on probabilistic models of causality. 
As with von Neumann quantum theory, the mathematical formalism can be employed independent of one’s 
metaphysical stance on reductions.   It is hoped that formulating a quantum version of causal graphical 
models will shed light on the physical realizability of causal theories. 
In particular, Pearl’s do-calculus can be viewed as a classical approximation to a physically accurate theory of 
causation. One role for a quantum theory of causality is to explicate conditions under which such an 
approximation is adequate. A Pearl-style causal Bayesian network is a reasonable approximation when: (1) 
decoherence effects nearly eliminate the off-diagonal elements of the density operator for all subsystems 
under consideration, rendering the global system essentially equivalent for all practical purposes to a 
statistical mixture of quasi-classical states; and (2) it is physically possible to set the state of a subsystem to a 
desired state without major disturbance to other subsystems.  The first condition holds in many cases of 
practical interest, but at present our understanding of the second condition is mainly heuristic and empirical. 
A physically realistic quantum theory of causation may open up new avenues of investigation.  Specifically, it 
opens the door to new, theoretically well-founded research into the kinds of interventions that are physically 
achievable and the conditions under which they can be applied without disturbing the states of and causal 
interactions among subsystems other than the targets of intervention. 
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